Math, asked by yatharth34, 11 months ago

Plese solve the question

Attachments:

Answers

Answered by Anonymous
2

Solution

l.h.s. =  \frac{1 -  \cos(\theta)  +  \sin(\theta) }{ \cos(\theta)  +  \sin(\theta)  - 1}  \\  =  \frac{ \sin(\theta)  + [(1 -  \cos(\theta) \: ] }{ \sin(\theta)  - [1 -  \cos(\theta)]}  \\  now \: multipying \: by \:  [\sin(\theta)  + (1 -  \cos(\theta) ] \: both \: \\  numaerator \: and \: denomintor \: we \: get...... \\  =  \frac{ [\sin(\theta)  + (1  -  \cos(\theta)  )] {}^{2}  }{[\sin(\theta)  - (1 -  \cos(\theta) )][(( \sin(\theta)   +  (1 -  \cos(\theta) )] \: }  \\  =  \frac{ [\sin {}^{2} (\theta)  + 2 \times  \sin(\theta) (1 -  \cos(\theta)  + (1 -  \cos(\theta) ) {}^{2} ] }{ [\sin {}^{2} (\theta) - (1 -  \cos(\theta) ) {}^{2} ] }  \\  now \: putting \:  \sin {}^{2} (\theta)  = [1 -  \cos {}^{2} (\theta)  ]\: \\  =  \frac{(1 -  \cos {}^{2} (\theta) ) + 2 \sin(\theta) (1 -  \cos(\theta)) + (1 -  \cos(\theta) ) {}^{2}  }{(1 -  \cos {}^{2} (\theta)) - (1 -  \cos(\theta)) {}^{2}   }  \\  =  \frac{(1 -  \cos(\theta) )(1 +  \cos(\theta)) +2 \sin(\theta) (1 -  \cos(\theta)) + (1 -  \cos(\theta) ) {}^{2}  \:   }{(1 -  \cos(\theta) )(1 +  \cos(\theta))   - (1 -  \cos(\theta)) {}^{2}  }  \\ now \: taking \: common \: of \: (1 -  \cos(\theta) ) \\  =  \frac{(1 -  \cos(\theta))[(1 +  \cos(\theta)  + 2 \sin(\theta)  + 1 -  \cos(\theta)]  }{(1 -  \cos(\theta) )[(1 +  \cos(\theta) - 1 +  \cos(\theta)]  }  \\  =  \frac{2 + 2 \sin(\theta) }{2 \cos(\theta) }  \\  =  \frac{2[1 +  \sin(\theta) ]}{2 \cos(\theta)}  \\  =  \frac{1 +  \sin(\theta) }{ \cos(\theta) }   \:  \:  = r.h.s.(proved)

.

Answered by EliteSoul
8

Answer:

\large{\boxed{\mathfrak\blue{Answer..}}}

Solution in the attachment ♡ ♡ ♡

Keep following ❤❤❤

Attachments:
Similar questions