Math, asked by pritika09, 10 months ago

solve the differential equation...

Attachments:

Answers

Answered by ihrishi
1

Answer:

 \frac{dy}{dx}  -  \frac{y(x + 1)}{x}  = 0 \\ \\   \therefore \:  \frac{dy}{dx}  = \frac{y(x + 1)}{x}  \\ \\  \therefore \:   \frac{1}{y} \frac{dy}{dx} = \frac{(x + 1)}{x}   \\ \\  \therefore \:   \frac{1}{y}dy = \frac{(x + 1)}{x}  dx \\ \\   \therefore \:   \frac{1}{y}dy = (1+  \frac{1}{x} ) dx \\ \\  integrating \: both \: sides \\ \\   \int\frac{1}{y}dy = \int(1+  \frac{1}{x} ) dx \\ \\\therefore \: log \: y = x + log \: x \:  + c \\  \\ \therefore \: log \: y - log \: x = x + c \\ \\  \therefore \: log \: \frac{y}{x}  = x + c \\  \\  \implies \: \frac{y}{x}  =  {e}^{x + c}  \\ \\   \huge  \red{\boxed{\implies \:  y =  x{e}^{x + c} }}

Similar questions