pls answer the first part of the question
Attachments:
LovableLiana:
Which question
Answers
Answered by
1
given,
OL is perpendicular to AB
AL=BL [ perpendicular from the centre to the chord bisects the chord]..................(1)
LHS=PA×PB
= (PL-AL)(PL+BL)
=(PL-AL)(PL+AL). [from (1)]
=PL²-AL²
In right ∆OLP,
OP²=OL ²+PL²
=>PL²=OP ²-OL²..................(2)
LHS=PL²-AL²
=OP²-OL²-AL²
=OP²-(OL²+AL²). [from (2)]
In right ∆OAL,
OA²=OL²+AL²...............(3)
LHS=OP²-(OL²+AL²)
=OP²-OA². [from (3)]
=OP²-OT² [OA=OT because radii of the same circle are equal]
In right ∆OPT,
OP²=OT²+PT²
=>PT²=OP²-OT²...............(4)
LHS=OP²-OT²
=PT². [from (4)]
Hence, LHS=PA×PB=PT²=RHS
Hence proved
HOPE U CAN UNDERSTAND
pls mark it as brainliest
OL is perpendicular to AB
AL=BL [ perpendicular from the centre to the chord bisects the chord]..................(1)
LHS=PA×PB
= (PL-AL)(PL+BL)
=(PL-AL)(PL+AL). [from (1)]
=PL²-AL²
In right ∆OLP,
OP²=OL ²+PL²
=>PL²=OP ²-OL²..................(2)
LHS=PL²-AL²
=OP²-OL²-AL²
=OP²-(OL²+AL²). [from (2)]
In right ∆OAL,
OA²=OL²+AL²...............(3)
LHS=OP²-(OL²+AL²)
=OP²-OA². [from (3)]
=OP²-OT² [OA=OT because radii of the same circle are equal]
In right ∆OPT,
OP²=OT²+PT²
=>PT²=OP²-OT²...............(4)
LHS=OP²-OT²
=PT². [from (4)]
Hence, LHS=PA×PB=PT²=RHS
Hence proved
HOPE U CAN UNDERSTAND
pls mark it as brainliest
Similar questions