Math, asked by sagarbaudh18, 5 months ago

Pls answer the question in the attachment​

Attachments:

Answers

Answered by IdyllicAurora
7

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the Concept of Trigonometry has been used. We see that we are given the question. The correct question is given below . Now we need to prove that LHS = RHS. Firstly we can simplify the LHS and then RHS. Then we can equate both and find the answer.

Let's do it !!

_______________________________________________

Correct Question :-

Prove that,

\\\;\bf{\mapsto\;\;\green{\dfrac{(1\;-\;\tan\theta)}{(1\;+\;\tan\theta)}\;=\;\dfrac{(\cot\theta\;+\;1)}{(\cot\theta\;-\;1)}}}

_______________________________________________

Solution :-

We know that,

\\\;\odot\;\;\sf{\tan\theta\;=\;\red{\dfrac{\sin\theta}{\cos\theta}}}

\\\;\odot\;\;\sf{\cot\theta\;=\;\red{\dfrac{\cos\theta}{\sin\theta}}}

_______________________________________________

~ For simplification of LHS ::

\\\;\sf{:\rightarrow\;\;LHS\;=\;\bf{\dfrac{(1\;-\;\tan\theta)}{(1\;+\;\tan\theta)}}}

By applying the values,

\\\;\sf{:\Longrightarrow\;\;\dfrac{\bigg(1\;-\;\dfrac{\sin\theta}{\cos\theta}\bigg)}{\bigg(1\;+\;\dfrac{\sin\theta}{\cos\theta}\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\dfrac{\bigg(\dfrac{\cos\theta\;-\;\sin\theta}{\cos\theta}\bigg)}{\bigg(\dfrac{\cos\theta\;+\;\sin\theta}{\cos\theta}\bigg)}}

Cancelling the like term, we get

\\\;\sf{:\Longrightarrow\;\;\bigg(\dfrac{\cos\theta\;-\;\sin\theta}{\cos\theta\;+\;\sin\theta}\bigg)}

\\\;\bf{:\Longrightarrow\;\;\orange{\dfrac{\cos\theta\;-\;\sin\theta}{\cos\theta\;+\;\sin\theta}}}

_______________________________________________

~ For simplification of RHS ::

\\\;\sf{:\rightarrow\;\;RHS\;=\;\dfrac{(\cot\theta\;+\;1)}{(\cot\theta\;-\;1)}}

By applying values, we get

\\\;\sf{:\Longrightarrow\;\;\dfrac{\bigg(\dfrac{\cos\theta}{\sin\theta}\;-\;1\bigg)}{\bigg(\dfrac{\cos\theta}{\sin\theta}\;+\;1\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\dfrac{\bigg(\dfrac{\cos\theta\;-\;\sin\theta}{\sin\theta}\bigg)}{\bigg(\dfrac{\cos\theta\;-\;\sin\theta}{\sin\theta}\bigg)}}

Cancelling the like terms, we get

\\\;\sf{:\Longrightarrow\;\;\bigg(\dfrac{\cos\theta\;-\;\sin\theta}{\cos\theta\;+\;\sin\theta}\bigg)}

\\\;\bf{:\Longrightarrow\;\;\orange{\dfrac{\cos\theta\;-\;\sin\theta}{\cos\theta\;+\;\sin\theta}}}

Now equating both LHS = RHS, we get

\\\;\bf{:\mapsto\;\;\blue{\dfrac{\cos\theta\;-\;\sin\theta}{\cos\theta\;+\;\sin\theta}\;=\;\dfrac{\cos\theta\;-\;\sin\theta}{\cos\theta\;+\;\sin\theta}}}

Clearly LHS = RHS.

\\\;\qquad\quad\underline{\boxed{\bf{\purple{Hence,\;\;Proved}}}}

_______________________________________________

More Formulas to know :-

\\\;\tt{\leadsto\;\;\sin^{2}\theta\;=\;1\;+\;\cos^{2}\theta}

\\\;\tt{\leadsto\;\;cosec^{2}\theta\;=\;1\;-\;\tan^{2}\theta}

\\\;\tt{\leadsto\;\;\sec^{2}\theta\;=\;1\;-\;\cot^{2}\theta}

\\\;\tt{\leadsto\;\;cosec\theta\;=\;\dfrac{1}{\sin\theta}}

\\\;\tt{\leadsto\;\;\sec\theta\;=\;\dfrac{1}{\cos\theta}}

\\\;\tt{\leadsto\;\;\tan\theta\;=\;\dfrac{1}{\cot\theta}}

Similar questions