Math, asked by shilpishipu79, 11 months ago

Pls answer this question

Attachments:

Answers

Answered by Anonymous
23

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{5 mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\underline{\blacksquare\:\:\footnotesize{Question}}

\footnotesize{\text{if (x-2) and}\:(x-\dfrac{1}{2})\:\text{are the factors of the polynomial}}

\footnotesize{px^2+5x+r\:\text{then prove that}\:\:\boxed{p=r} }

\underline{\blacksquare\:\:\footnotesize{AnsweR}}

\footnotesize{let\:,\: f(x)=px^2+5x+r}

\footnotesize{and\:\: g_1(x)=(x-2)}

\footnotesize{and \:\:g_2(x)=(x-\dfrac{1}{2})}

\footnotesize{g_1(x)\:\text{is a factor of f(x) , so the remainder is zero }}

\footnotesize{x-2=0}

\footnotesize{x=2}

\therefore\:\:\footnotesize{f(2)=p(2)^2+5(2)+r=0}

\footnotesize{4p+10+r=0}

\boxed{\footnotesize{4p+r=-10}} ....................(i)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{0.3 mm}\put(1,1){\line(1,0){6.5}}\end{picture}

\footnotesize{g_2(x)\:\text{ is a factor of f(x) , so the remainder is zero }}

\footnotesize{x-\dfrac{1}{2}=0}

\footnotesize{x=\dfrac{1}{2}}

\therefore\:\:\footnotesize{f(2)=p(\dfrac{1}{2})^2+5(\dfrac{1}{2})+r=0}

\footnotesize{\dfrac{p}{4}+\dfrac{5}{2}+r=0}

\footnotesize{\dfrac{p+10+4r}{4}=0}

\boxed{\footnotesize{p+4r=-10}}\:......................(ii)

\footnotesize{\text{comparing}\:equ^n\:(i)\:and\:(ii)\:,\:we\: get}

\footnotesize{p+4r=4p+r}

\footnotesize{4r-r=4p-p}

\footnotesize{3r=3p}

\boxed{\footnotesize{p=r}} (proved)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{5 mm}\put(1,1){\line(1,0){6.8}}\end{picture}


Anonymous: Thanks for your brilliant answers ^^"
BrainlyAnswerer0687: bhai code doge kab
Similar questions