pls answer this question pls ..
Answers
Answer:
Required value of tanA + cotA is 2.
Step-by-step explanation:
Given,
cosA + sinA = √2
= > ( cosA + sinA )^2 = ( √2 )^2
= > cos^2 A + sin^2 A + 2sinAcosA = 2
= > 1 + 2cosAsinA = 2 { cos^2 B + sin^2 B = 1 }
= > 2 cosAsinA = 2 - 1
= > 2sinAcosA = 1
= > 2 = 1 / ( cosAsinA )
= > 2 = ( sin^2 A + cos^2 A ) / ( sinAcosA ) { 1 = sin^2 B + cos^2 B }
= > 2 = { ( sin^2 A ) / ( sinAcosA ) } + { ( cos^2 A ) / ( sinAcosA ) }
= > 2 = ( sinA / cosA ) + ( cosA / sinA )
= > 2 = tanA + cotA
Hence the required value of tanA + cotA is 2.
Answer:
Step-by-step explanation:
cosA+sinA=√2
cos²A+sin²A+2sinAcosA=2 (sin²A+cos²A=1)
1+2cosAsinA=2
2cosAsinA=1
sinAcosA=1/2
tanA+cotA
sinA/cosA+cosA/sinA
sin²A+cos²A/sinAcosA
1/ 1/2
1*2
2
.
.
.
.
.
plzzz mark it as brainliest...