Math, asked by ChristyCR7, 10 months ago

pls answer this question pls ..​

Attachments:

Answers

Answered by abhi569
1

Answer:

Required value of tanA + cotA is 2.

Step-by-step explanation:

Given,

cosA + sinA = √2

= > ( cosA + sinA )^2 = ( √2 )^2

= > cos^2 A + sin^2 A + 2sinAcosA = 2

= > 1 + 2cosAsinA = 2 { cos^2 B + sin^2 B = 1 }

= > 2 cosAsinA = 2 - 1

= > 2sinAcosA = 1

= > 2 = 1 / ( cosAsinA )

= > 2 = ( sin^2 A + cos^2 A ) / ( sinAcosA ) { 1 = sin^2 B + cos^2 B }

= > 2 = { ( sin^2 A ) / ( sinAcosA ) } + { ( cos^2 A ) / ( sinAcosA ) }

= > 2 = ( sinA / cosA ) + ( cosA / sinA )

= > 2 = tanA + cotA

Hence the required value of tanA + cotA is 2.

Answered by komalbhambri2004
0

Answer:

Step-by-step explanation:

cosA+sinA=√2

cos²A+sin²A+2sinAcosA=2        (sin²A+cos²A=1)

1+2cosAsinA=2

2cosAsinA=1

sinAcosA=1/2

tanA+cotA

sinA/cosA+cosA/sinA

sin²A+cos²A/sinAcosA

1/ 1/2

1*2

2

.

.

.

.

.

plzzz mark it as brainliest...

Similar questions