Pls..prove this....[tanx secx -1] / [tanx -secx 1]= tanx secx ....
i am confused
Anonymous:
Is question right ?
Answers
Answered by
8
Here is ur answer ⏬⏬⏬⏬⏬
❇➡ (tan x+sec x-1)/(tan x-sec x+1)
=(sin x/cos x+1/cos x-1)/(sin x/cos x-1/cos x+1) [tan x=sin x/cos x &sec x=1/cos x]
={(sin x+1-cos x)/cos x}/{(sin x-1+cos x)/cos x}
=(sin x-cos x+1)/(sin x+cos x-1)
={(sin x-cos x+1)+(sin x+cos x-1)}/{(sin x-cos x+1)-(sin x+cos x-1)} [by componendo dividendo]
=(sin x-cos x+1+sin x+cos x-1)/(sin x-cos x+1-sin x-cos x+1)
=2sin x/(2-2cos x)
=2sin x/2(1-cos x)
=sin x/(1-cos x)
=2sin (x/2)cos( x/2)/[1-{1-2sin2(x/2)}] [since,sin x=2sin (x/2)cos (x/2) ]
=2sin (x/2)cos (x/2) / 2sin2(x/2)
=cos (x/2) / sin x/2
={cos (x/2)+sin (x/2)}/{cos (x/2)-sin (x/2)} [by componendo dividendo]
=[{cos (x/2)+sin (x/2)}{cos (x/2)+sin (x/2)}] / [{cos( x/2)-sin (x/2)}{cos (x/2)+sin (x/2)}] [rationalise]
={cos2(x/2)+sin2(x/2)+2sin (x/2)cos (x/2)} / {cos2(x/2)-sin2(x/2)}
=(1+sin x)/cos x
=1/cos x+sin x/cos x
=sec x+tan x
=tan x+sec x
Hope it helps.
Cheers!!!!
Answered by
3
The answer of u r question is..✌️✌️
Ans:✍️✍️✍️✍️✍️❣️✍️
Similar questions