Math, asked by Shubusingh58, 1 year ago

Pls..prove this....[tanx secx -1] / [tanx -secx 1]= tanx secx ....

i am confused


Anonymous: Is question right ?

Answers

Answered by Anonymous
8
\huge{Hey Mate!!!}

Here is ur answer ⏬⏬⏬⏬⏬

❇➡  (tan x+sec x-1)/(tan x-sec x+1)

=(sin x/cos x+1/cos x-1)/(sin x/cos x-1/cos x+1)          [tan x=sin x/cos x &sec x=1/cos x]

={(sin x+1-cos x)/cos x}/{(sin x-1+cos x)/cos x}

=(sin x-cos x+1)/(sin x+cos x-1)

={(sin x-cos x+1)+(sin x+cos x-1)}/{(sin x-cos x+1)-(sin x+cos x-1)}    [by componendo dividendo]

=(sin x-cos x+1+sin x+cos x-1)/(sin x-cos x+1-sin x-cos x+1)

=2sin x/(2-2cos x)

=2sin x/2(1-cos x)

=sin x/(1-cos x)

=2sin (x/2)cos( x/2)/[1-{1-2sin2(x/2)}]     [since,sin x=2sin (x/2)cos (x/2) ]

=2sin (x/2)cos (x/2) / 2sin2(x/2)

=cos (x/2) / sin x/2

={cos (x/2)+sin (x/2)}/{cos (x/2)-sin (x/2)}     [by componendo dividendo]

=[{cos (x/2)+sin (x/2)}{cos (x/2)+sin (x/2)}] / [{cos( x/2)-sin (x/2)}{cos (x/2)+sin (x/2)}]   [rationalise]

={cos2(x/2)+sin2(x/2)+2sin (x/2)cos (x/2)} / {cos2(x/2)-sin2(x/2)}

=(1+sin x)/cos x

=1/cos x+sin x/cos x

=sec x+tan x

=tan x+sec x

Hope it helps.

Cheers!!!!
Answered by Anonymous
3
\huge{Hello Friend}

The answer of u r question is..✌️✌️

Ans:✍️✍️✍️✍️✍️❣️✍️


 \frac{(tan \: x + secx - 1)}{(tan \: x - sec \: x + 1)}


 =  \frac{(sin \:  \frac{x}{cos \:  +  \frac{x + 1}{cosx - 1} } )}{(sin \:  \frac{x}{cos \:  \frac{x - 1}{cosx + 1} }) }


 =  \frac{tan \: x = sin \: x}{cosx = sec \frac{x = 1}{cos x } }


 =  \frac{sin \: x - cos \: x + 1}{sin \: x + cos \: x - 1}

 =  \frac{sin \: x - cos \: x + 1sin \: x \:  + cos \: x - 1}{sin \:  x \:  - cos \: x + 1sinx \:  - cosx + 1}



 =  \frac{2sinx}{2 - 2cos \: x}


 =  \frac{2sin \: x}{2(1 - cosx)}


 =  \frac{sinx}{1 - cosx}


 =  \frac{2sin \: \frac{x}{2}  cos \:  \frac{x}{2} }{1 - (1 - 2sin \: 2 \frac{x}{2}) }


 \frac{2 \sin( \frac{x}{2} \cos( \frac{x}{2}  ) }{2 \sin(2 \frac{x}{2} ) }


 =  \cos( \frac{x}{2} )  \sin( \frac{x}{2} )


 =  \frac{1 +  \sin(x) }{ \cos(x) }


 =   \frac{1}{ \cos(x) }  +  \frac{ \sin(x) }{ \cos(2) }


 =  2\sec(x)  +  \tan(2)


 =  \tan(x)  +  \sec(x)


\huge{Thank you}
Similar questions