Math, asked by Anonymous, 1 year ago

pls solve step by step try to do it in pAPER

Attachments:

Answers

Answered by siddhartharao77
6
Note: I don't have pen and paper with me. Sorry about that.

Answer: Option(D)

Explanation:


 Given : \frac{2( \sqrt{2} +  \sqrt{6} ) }{3( \sqrt{2+  \sqrt{3} }) }

On rationalizing, we get

 \frac{2( \sqrt{2} +  \sqrt{6} ) }{3 (\sqrt{2 +  \sqrt{3} }) } *  \frac{ \sqrt{2 +  \sqrt{3} } }{ \sqrt{2 +  \sqrt{3} } }

 \frac{2( \sqrt{2}  +  \sqrt{6})( \sqrt{2 +  \sqrt{3} })  }{6 + 3 \sqrt{3} }

On rationalising, we get

 \frac{2( \sqrt{2} + \sqrt{6})( \sqrt{2+  \sqrt{3} } )(6 - 3 \sqrt{3})}{(6 + 3 \sqrt{3})(6 - 3 \sqrt{3} ) }

 \frac{6 \sqrt{6} \sqrt{2+ \sqrt{3} } - 6 \sqrt{2}  \sqrt{2 +  \sqrt{3} }   }{36 - 27}

 \frac{ \sqrt{6}( \sqrt{6} -  \sqrt{2}) \sqrt{2 +  \sqrt{3} }   }{9}

 \frac{2( \sqrt{6} -  \sqrt{2} ) \sqrt{2 +  \sqrt{3} }  }{9}

 \frac{2( \sqrt{6} -  \sqrt{2} ) \sqrt{2 +  \sqrt{3} }  }{3}

 \frac{2 \sqrt{2 +  \sqrt{3} } *  \sqrt{6} + 2 \sqrt{2 +  \sqrt{3} } (- \sqrt{2})  }{3}

 \frac{2( \sqrt{3} + 3) - 2( \sqrt{3} + 1)  }{3}

 \frac{2 \sqrt{3} + 6 - 2 \sqrt{3} - 2  }{3}

 \frac{4}{3}



Hope this helps!

siddhartharao77: :-)
Answered by Anonymous
7
Hi,

Please see the attached file!


Thanks
Attachments:
Similar questions