Math, asked by parthraj01, 4 months ago

pls solve the question given in problem​

Attachments:

Answers

Answered by TheWonderWall
6

\large\sf\underline{Given}

ABCD is a cyclic quadrilateral in which :

  • ∠A = ( 2x + 4 )°

  • ∠B = ( x + 10 )°

  • ∠C = ( 4y - 4 )°

  • ∠D = ( 5y + 5 )°

\large\sf\underline{To\:find}

  • Values of x and y .

  • The measure of each angles .

\large\sf\underline{Solution}

We know ,

The opposite angles in a cyclic quadrilateral = \small{\underline{\boxed{\mathrm\pink{180°}}}}

So ,

\sf\:∠A + ∠C = 180°

\sf➜\:(2x+4)° + (4y-4)° = 180°

\sf➜\:2x+4 +4y-4= 180

\sf➜\:2x+ 4y= 180

\sf➜\:2(x+ 2y)= 180

\sf➜\:x+ 2y= \frac{180}{2}

\sf➜\:x+2y=90\:----(I)

And ,

\sf\:∠B+ ∠D = 180°

\sf➜\:(x+10)° + (5y+5)° = 180°

\sf➜\:x+10 +5y+5= 180

\sf➜\:x+ 5y+15= 180

\sf➜\:x+ 5y= 180-15

\sf➜\:x+5y=165\:----(II)

Now subtracting (I) from (II) we get :

\sf\:(II)-(I)

\sf➙\:(x+5y)-(x+2y)=165-90

\sf➙\:x+5y-x-2y=165-90

\sf➙\:x-x+5y-2y=165-90

\sf➙\:3y=75

\sf➙\:y=\frac{75}{3}

\small{\underline{\boxed{\mathrm\purple{➤\:y=25°}}}}

Substituting the value of y in equation (I) :

\sf➙\:x+2y=90

\sf➙\:x+2 \times 25=90

\sf➙\:x+ 50=90

\sf➙\:x=90-50

\small{\underline{\boxed{\mathrm\purple{➤\:x=40°}}}}

Now substituting the value of x and y in ∠A , ∠B , ∠C and ∠D we get :

  • ∠A = ( 2x + 4 )°

\sf⤐\:∠A =[(2 \times 40 )+ 4]°

\sf⤐\:∠A =[80 + 4]°

\small{\underline{\boxed{\mathrm\blue{➺\:∠A =\:84°}}}}

  • ∠B = ( x + 10 )°

\sf⤐\:∠B =(40 + 10)°

\small{\underline{\boxed{\mathrm\blue{➺\:∠B =\:50°}}}}

  • ∠C = ( 4y - 4 )°

\sf⤐\:∠C =[(4 \times 25)- 4]°

\sf⤐\:∠C =[100 - 4]°

\small{\underline{\boxed{\mathrm\blue{➺\:∠C =\:96°}}}}

  • ∠D = ( 5y + 5 )°

\sf⤐\:∠D =[(5 \times 25)+5]°

\sf⤐\:∠D =[125 +5]°

\small{\underline{\boxed{\mathrm\blue{➺\:∠D =\:130°}}}}

\large\sf\underline{Verification\:of\:my\:answer}

As opposite angles of a cyclic quadrilateral are supplementary , let's see if :

\sf\:∠A + ∠C = 180°

\sf➤\:84° + 96° = 180°

\sf➤\:180° = 180°

So LHS = RHS

Again ,

\sf\:∠B + ∠D = 180°

\sf➤\:50° + 130° = 180°

\sf➤\:180° = 180°

Hence LHS = RHS

Therefore the measure of all the angles are correct .

Hᴀᴘᴘʏ Sᴏʟᴠɪɴɢ :) !¡

Similar questions