Math, asked by shilpasathishk, 1 year ago

Pls solve this answer fast.
Pls don’t give swamp answers .

Attachments:

Answers

Answered by Anonymous
158

\huge\red{\frak{\underline{\underline{\:ANSWER}}}}

\sf{\pink{\underline{\:Given}}}

\green{\mapsto{\sf{\:\sec \theta \:=\:x+\dfrac{1}{4x}}}}.....(1)

\sf{\orange{\underline{\:Evaluate}}}

\green{\mapsto{\sf{\:(\sec \theta + \tan \theta)}}}

\LARGE\pink{\frak{\underline{\underline{\:EXPLANATION}}}}

\:\:\:\:\green{\sf{\:(We\:know)}}

\bold{\red{\boxed{\boxed{\pink{\:\tan^2 \theta \:=\sec^2 \theta \:-\:1}}}}}

\:\:\:\:\green{\sf{\:keep\:value\:by\:equ(1)}}

\mapsto\sf{\:\tan^2 \theta\:=\:(x+\dfrac{1}{4x})^2\:-\:1}

\:\:\:\:\:\green{\sf{\:(a+b)^2\:=\:(a^2+b^2+2ab)}}

\mapsto\sf{\:\tan^2 \theta\:=\:\left(x^2+\dfrac{1}{16x^2} + \dfrac{1}{2} - 1\right)}

\mapsto\sf{\:\tan^2 \theta\:=\:\left(x^2+\dfrac{1}{16x^2}  - \dfrac{1}{2}\right)}

\mapsto\sf{\:\tan^2 \theta\:=\:\left(x-\dfrac{1}{4x}\right)^2}

\mapsto\sf{\:\tan \theta\:=\:\sqrt{\left(x-\dfrac{1}{4x}\right)^2}}

\mapsto\sf{\:\tan \theta\:=\:±\left(x-\dfrac{1}{4x}\right)}

Take ( + ) Sign

\mapsto\sf{\:\tan \theta\:=\:\left(x-\dfrac{1}{4x}\right)}

Take ( - ) Sign

\mapsto\sf{\:\tan \theta\:=\:\left(-x+\dfrac{1}{4x}\right)}

Case(1):-

  • When,

\red{\sf{\:\sec \theta\:=\:(x+\frac{1}{4x})\:\:and\:\:\tan \theta\:=\:(x-\frac{1}{4x})}}

Value:-

\pink{\sf{\:(\sec \theta + \tan \theta)}}

\mapsto\sf{\:(x+\:\cancel{\dfrac{1}{4x}})\:+\:(x-\cancel{\dfrac{1}{4x}})}

\mapsto\pink{\sf{\:(2x)}}

Case(2):-

  • When

\red{\sf{\:\sec \theta\:=\:(x+\frac{1}{4x}\:\:and\:\:\tan \theta\:=\:(-x+\frac{1}{4x}}}

Value

\sf{\:(\sec \theta + \tan \theta)}

\mapsto\sf{\:(\cancel{x}+\:\dfrac{1}{4x})\:+\:(\cancel{-x}+\dfrac{1}{4x})}

\mapsto\pink{\sf{\:\left(\dfrac{1}{2x}\right)}}

\large\green{\underbrace{\:Thus}}

\:\:\:\red{\sf{\:Value\:Of\:(\sec \theta + \tan \theta)}}

\mapsto\pink{\sf{\:(2x)}}

\mapsto\pink{\sf{\:\left(\dfrac{1}{2x}\right)}}

______________________

Similar questions