pls solve this. ( show that the square of any positive integer is of the form 5m,5m+1,5m+4 for some integer m.)
Answers
Answered by
1
let us suppose that the m is positive integer 0,1,2,3,4, (
then, put the m=0
5m+0=5m
5m+1, 5m+2,5m+3 , 5 m +4
then m is positive integers
then, put the m=0
5m+0=5m
5m+1, 5m+2,5m+3 , 5 m +4
then m is positive integers
Answered by
4
Hey!
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Let a be any integer in form of 5q, 5q+1 , 5q+2
a= 5q
•Squaring both sides :-
(a)² = (5q)²
a² = 25q²
a² = 5q(5q)
•Let m = q(5q)
•a² = 5m..... Proved
> Now second :-
a = 5q+1
Squarring both sides :-
a² = (5q+1)²
a² = (5q)² + (1)² + 2.5q.1
a² = 25q² + 1 + 10q
a² = 5(5q² + 2q) +1
•Let m = 5q²+2q)
a²= 5m + 1
Third case :-
5q + 2
a² = (5q+2)²
a² = (5q)² + 2.5q.2 + (2)²
a² = 25q² + 20q + 4
a² = 5(5q² + 4q) + 4
•Let m = 5q²+4q
a² = 5m + 4 ...... Proved
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Regards :)
Yash Raj ✌
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Let a be any integer in form of 5q, 5q+1 , 5q+2
a= 5q
•Squaring both sides :-
(a)² = (5q)²
a² = 25q²
a² = 5q(5q)
•Let m = q(5q)
•a² = 5m..... Proved
> Now second :-
a = 5q+1
Squarring both sides :-
a² = (5q+1)²
a² = (5q)² + (1)² + 2.5q.1
a² = 25q² + 1 + 10q
a² = 5(5q² + 2q) +1
•Let m = 5q²+2q)
a²= 5m + 1
Third case :-
5q + 2
a² = (5q+2)²
a² = (5q)² + 2.5q.2 + (2)²
a² = 25q² + 20q + 4
a² = 5(5q² + 4q) + 4
•Let m = 5q²+4q
a² = 5m + 4 ...... Proved
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Regards :)
Yash Raj ✌
Attachments:
shreyadubey2:
right
Similar questions