Math, asked by sangeetha521, 1 year ago

pls step by step answer

Attachments:

Answers

Answered by ihrishi
1

Answer:

 \frac{5 \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\ multiplying \: nr \: and \: dr \: by \: the \:  \\ conjugate \: of \: dr \: that \: is \: by \:   \\ \sqrt{3}  -  \sqrt{2}  \: we \: find:  \\ \frac{5 \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  } \times  \frac{\sqrt{3}  -  \sqrt{2} }{\sqrt{3}  -  \sqrt{2} }  \\ =  \frac{(5 \sqrt{3} +  \sqrt{2} ) \times (\sqrt{3}  -  \sqrt{2}) }{( \sqrt{3} +  \sqrt{2}  )\times  (\sqrt{3}  -  \sqrt{2})}  \\  =  \frac{5 \sqrt{3}( \sqrt{3}   -  \sqrt{2} ) +  \sqrt{2} ( \sqrt{3}  -  \sqrt{2} )}{( { \sqrt{3} })^{2}  -  {( \sqrt{2} })^{2} }  \\  =  \frac{5 \times 3 - 5 \sqrt{6} +  \sqrt{6}  - 2 }{3 - 2}  \\  =  \frac{15 - 4 \sqrt{6}  - 2}{1}  \\  = 13 - 4 \sqrt{6}

Similar questions