Math, asked by sm5751872, 1 month ago

pls tell how to find ​

Attachments:

Answers

Answered by 12thpáìn
2

A.P: 6,13,20, - - - - - - - 216.

Here,

\sf{ \boxed{ \sf{a_1 = 6}} ~~~~~~~ \boxed{ \sf{d = 13-6= 7}} ~~~~~~~ \boxed{ \sf{a_n = 216}}}

We know

 \\  \:  \:  \: \sf{a_n = a+(n-1)d }

\:  \:  \: \sf{216 = 6+(n-1)7 }

\:  \:  \: \sf{216 - 6 = 7n - 7}

\:  \:  \: \sf{ 7n  = 210 + 7}

\:  \:  \: \sf{ n  = 217 \div 7}

\:  \:  \: \sf{ n  =31} \\  \\

Total Number of term in A.P is 31.

 \sf{Middle \:  term(Median) of  \: A.P =  \left( \frac{n+1}{2}\right)^{th} observations}

 \sf{Middle \:  term(Median) of  \: A.P =  \left( \frac{31+1}{2}\right)^{th} observations}

 \sf{Middle \:  term(Median) of  \: A.P =  \left( \frac{32}{2}\right)^{th} observations}

\sf{Middle \:  term(Median) of  \: A.P =  16^{th}  \: observations} \\  \\

 \:  \:  \:  \:  \: \sf{a_{16} = a +{(16-1)} d}

 \:  \:  \:  \:  \: \sf{a_{16} = 6 +15 \times  7}

\:  \:  \:  \:  \: \sf{a_{16} = 6 +105}

\:  \:  \:  \:  \: \sf{a_{16} = 111}

  • Hence, the middle term of the AP is 111.

Answered by jaswasri2006
1

the middle term of the AP is 111

Similar questions