plz answer the question.
Answers
Given
- tanθ + sinθ = a _____(1)
- tanθ - sinθ = b ______(2)
To Prove
- a² - b² = 4√(ab)
Solution
tanθ + sinθ = a
tanθ - sinθ = b
Adding (1) and (2) we have
⇒tanθ + sinθ + tanθ - sinθ = a + b
⇒2tanθ = a + b
Substracting (2) from (1) we have
⇒(tanθ + sinθ) - (tanθ - sinθ) = a - b
⇒ tanθ + sinθ - tanθ + sinθ = a - b
⇒ 2sinθ = a - b
and
ab = (tanθ+ sinθ)(tanθ - sinθ)
⇒ ab = tan²θ - sin²θ
⇒ ab = sin²θ/cos²θ - sin²θ
⇒ ab = (sin²θ - sin²θ.cos²θ)/cos²θ
⇒ ab = sin²θ(1 - cos²θ)/cos²θ
⇒ab = tan²θ.sin²θ
⇒√(ab) = tanθ.sinθ
Now
(a - b)(a + b) = 2tanθ×2sinθ
⇒ a² - b² = 4tanθ.sinθ
⇒a² - b² = 4√(ab)
Proved
Solutions:
tan(theta) + sin(theta) = a
tan(theta) - sin(theta) = b
adding the equation (1) and (2).
tan(theta) + sin(theta) - tan(theta) - sin(theta) = a + b
2sin(theta) = a + b
substrating equation (2) and (1)
(tan(theta) + sin(theta)) - (tan(theta) - sin(theta)) = (a - b)
tan(theta) + sin(theta) - tan(theta) - sin(theta) = a - b
2sin(theta) = a + b
ab = (tan(theta) + sin(theta))(tan(theta) - sin(theta))
ab = tan²(theta) - sin²(theta)
ab = sin²(theta)/cos²(theta) - sin²(theta)
ab = sin²(theta) (1 - cos²(theta)/cos²(theta)
ab = tan²(theta) × sin²(theta)
√ab = tan(theta) × sin(theta)
(a + b)(a - b) = 2tan(theta) × 2sin(theta)
a² - b² = 4tan(theta)•sin(theta)
a² - b² = 4√ab
silentlover45.❤️