English, asked by Anonymous, 1 year ago

plz answer this step by step in a notebook ...​

Attachments:

Answers

Answered by pal69
1

Answer:

see in attachment.

Mark as Brainlist answer.

Attachments:
Answered by Anonymous
4

\huge\orange{\boxed{\underline{ANSWER}}}

GIVEN THAT:

➨ a1, a2, a3,... are in A.P.

➨ a1 + a5+ a10+ a15+ a20+ a24= 225

FORMULA:

➨ nth term and sum of nth term of an A.P

&#10152 \:  a_{n} = a + (n - 1)d \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10152 \:  s_{n} =  \frac{n}{2}(2a + (n - 1)d)

where

a = first term of A.P

n = number of term

d = difference between two term

an = nth term of the A.P

Sn = sum of the nth term

SOLUTIONS:

➨ a1 + a5+ a10+ a15+ a20+ a24= 225

so

&#10230 \:  \: 6a + 69d = 225 \:  \:  \:  \:  \:  \:   \\  \\ &#10230 \:  \: 3(2a + 23d) = 225 \\  \\&#10230 \:  \:  2a  + 23d =  \frac{\cancel{225}}{\cancel{3}}  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \: 2a + 23d = 75 \:  \  \:  \: (1)

➨ Now sum of the 24th term

&#10230 \:  \:  s_{24} =  \frac{\cancel{24}}{\cancel2} (2a + (24 - 1)d) \\  \\ &#10230 \:  \: s_{24} = 12(2a + 23d) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \: s_{24} = 12 \times 75 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \: s_{24}  = 900 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

➨ your answer is 900.

Similar questions