Plz can anyone tell me ninth question
Attachments:
Answers
Answered by
1
9.simplify the following rational expressions in the lowest terms. Is this what you asked?
tanisha38:
yes plz solve this question
Answered by
0
Given (ax^2 -x^3/a^3 + x^3 * a^2 - ax+x^2/a^2x^2 + a^4) + a^2 - 2ax + x^2/a^4-x^4. ----- (1)
1st Part :
= ax^2 - x^3/a^3 + x^3 * a^2 - ax + x^2/(a^2x^2 + a^4) can be written as
= (ax^2 - x^3)(a^2-ax+x^2)/(a^3+x^3)(a^2x^2+x^4)
= x^2(a-x)(a^2-ax+x^2)/(x^2(a^3+x^3)(a^2+x^2)
= (a-x)(a^2-ax+x^2)/(a+x)((a^2+x^2)(a^2-ax+x^2)
= (a-x)/(a-x)(a^2+x^2) ----- (2)
2nd Part :
a^2 - 2ax + x^2/a^4 - x^4 can be written as
= (x-a)^2/a^4-x^4.
= (x-a)(x-a)/(a+x)(a-x)(a^2+x^2)
= - (x-a/(a+x)(x^2+a^2). ---- (3).
Substitute (2) and (3) in (1).
= a - x/(a+x)(a^2+x^2) - (x-a)/(a+x)(a^2+x^2)
= 2a - 2x/(a+x)(a^2+x^2).
Hope this helps!
1st Part :
= ax^2 - x^3/a^3 + x^3 * a^2 - ax + x^2/(a^2x^2 + a^4) can be written as
= (ax^2 - x^3)(a^2-ax+x^2)/(a^3+x^3)(a^2x^2+x^4)
= x^2(a-x)(a^2-ax+x^2)/(x^2(a^3+x^3)(a^2+x^2)
= (a-x)(a^2-ax+x^2)/(a+x)((a^2+x^2)(a^2-ax+x^2)
= (a-x)/(a-x)(a^2+x^2) ----- (2)
2nd Part :
a^2 - 2ax + x^2/a^4 - x^4 can be written as
= (x-a)^2/a^4-x^4.
= (x-a)(x-a)/(a+x)(a-x)(a^2+x^2)
= - (x-a/(a+x)(x^2+a^2). ---- (3).
Substitute (2) and (3) in (1).
= a - x/(a+x)(a^2+x^2) - (x-a)/(a+x)(a^2+x^2)
= 2a - 2x/(a+x)(a^2+x^2).
Hope this helps!
Similar questions