Math, asked by anishamohan413, 2 months ago

plz help me 11th std pcmb Maths problem limits chapter name plz help me ​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\lim_{x \to 1} \dfrac{ {4}^{x - 1}  -  {2}^{x}  + 1}{ {(x - 1)}^{2} }

On substituting directly x = 1, we get

\rm \:  =  \:  \:  \dfrac{ {4}^{1 - 1}  -  {2}^{1}  + 1}{ {(1 - 1)}^{2} }

\rm \:  =  \:  \:  \dfrac{ {4}^{0}  -  {2}^{1}  + 1}{ {(0)}^{2} }

\rm \:  =  \: \: \dfrac{1 - 2 + 1}{0}

\rm \:  =  \: \: \dfrac{0}{0}

\rm \:  =  \: \: which \: is \: meaningless.

To, solve this now,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1} \dfrac{ {4}^{x - 1}  -  {2}^{x}  + 1}{ {(x - 1)}^{2} }

 \red{\rm :\longmapsto\:Put \: x = 1 + h, \: as \: x \to \: 1 \: so \: h \:  \to \: 0}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \dfrac{ {4}^{1 + h - 1}  -  {2}^{1 + h}  + 1}{ {(1 + h - 1)}^{2} }

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \dfrac{ {4}^{h}  -  {2}^{1 + h}  + 1}{ {h}^{2} }

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \dfrac{ {4}^{h}  -  2.{2}^{h}  + 1}{ {h}^{2} }

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \dfrac{ {2}^{2h}  -  2.{2}^{h}  + 1}{ {h}^{2} }

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \dfrac{ ({2}^{h})^{2}   -  2.{2}^{h}  + 1}{ {h}^{2} }

We know,

\underbrace{ \boxed{ \bf \:  {x}^{2} - 2xy +  {y}^{2} =  {(x - y)}^{2}}}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \dfrac{ ({2}^{h} - 1)^{2}}{ {h}^{2} }

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \dfrac{ ({2}^{h} - 1)}{ {h}} \times  \displaystyle\lim_{h \to 0}  \dfrac{ ({2}^{h} - 1)}{ {h}}

We know,

\underbrace{ \boxed{ \bf \: \displaystyle\lim_{x \to 0}  \dfrac{ ({a}^{x} - 1)}{ {x}} = loga}}

So, using this formula, we have .

\rm \:  =  \: \: log2  \times log2

\rm \:  =  \: \:  {(log2)}^{2}

Hence,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}  \bf \: \dfrac{ {4}^{x - 1}  -  {2}^{x}  + 1}{ {(x - 1)}^{2} }  =  {(log2)}^{2}

Alternative Method :-

\rm :\longmapsto\:\displaystyle\lim_{x \to 1} \dfrac{ {4}^{x - 1}  -  {2}^{x}  + 1}{ {(x - 1)}^{2} }

Using L - Hospital Rule, we get

\rm \:  =  \: \:\displaystyle\lim_{x \to 1} \dfrac{ {4}^{x - 1}log4  -  {2}^{x}log2}{2 {(x - 1)}}

\rm \:  =  \: \:\displaystyle\lim_{x \to 1} \dfrac{ {4}^{x - 1}(log4)^{2}   -  {2}^{x}(log2)^{2} }{2}

\rm \:  =  \: \: \dfrac{ {4}^{1 - 1}(log4)^{2}   -  {2}^{1}(log2)^{2} }{2}

\rm \:  =  \: \: \dfrac{ {4}^{0}(log4)^{2}   -  {2}(log2)^{2} }{2}

\rm \:  =  \: \: \dfrac{(2log2)^{2}   -  {2}(log2)^{2} }{2}

\rm \:  =  \: \: \dfrac{4(log2)^{2}   -  {2}(log2)^{2} }{2}

\rm \:  =  \: \: \dfrac{(log2)^{2}}{2}

\rm \:  =  \: \:  {(log2)}^{2}

Hence,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}  \bf \: \dfrac{ {4}^{x - 1}  -  {2}^{x}  + 1}{ {(x - 1)}^{2} }  =  {(log2)}^{2}

Formula Used :-

\rm :\longmapsto\:\dfrac{d}{dx} {a}^{x}  =  {a}^{x}loga

\rm :\longmapsto\:\dfrac{d}{dx}k = 0

\rm :\longmapsto\:\dfrac{d}{dx}x = 1

\rm :\longmapsto\:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}

\rm :\longmapsto\: log( {x}^{y} ) = y \: logx

Similar questions