Math, asked by Anonymous, 2 months ago

Plz solve me this maths equation​

Attachments:

Answers

Answered by TwilightShine
7

What to do?

  • Verify that p × (q + r) = p × q + p × r by taking p = -3/5, q = 1/2 and r = -7/9.

Solution :-

  • We have to show that :-

 \sf \dfrac{ - 3}{ \:  \:  \: 5}  \times  \left( \dfrac{1}{2}  +  \dfrac{ - 7}{ \:  \:  \:  9}  \right) =  \dfrac{ - 3}{ \:  \:  \: 5}  \times  \dfrac{1}{2}  +  \dfrac{ - 3}{ \:  \:  \: 5}  \times  \dfrac{ - 7}{ \:  \:  \: 9}

LHS

 \implies\tt \dfrac{ - 3}{ \:  \:  \: 5}  \times   \bigg(\dfrac{1}{2}  +   \dfrac{ - 7}{ \:  \:  \: 9}  \bigg)

\implies  \tt\dfrac{ - 3}{ \:  \:  \: 5}  \times  \bigg( \dfrac{(1 \times 9) + ( - 7 \times 2)}{18}  \bigg)

 \implies\tt \dfrac{ - 3}{ \:  \:  \: 5}  \times   \bigg(\dfrac{9 - 14}{18}  \bigg)

\implies  \tt\dfrac{ - 3}{ \:  \:  \: 5}  \times  \dfrac{ - 5}{18}

Cancelling the numbers,

 \implies\tt \dfrac{ - 1}{ \:  \:  \: 1}  \times  \dfrac{ - 1}{ \:  \:  \: 6}

\implies  \tt\dfrac{1}{6}

 \\

RHS

 \implies \tt\dfrac{ - 3}{ \:  \:  \:  5}  \times  \dfrac{1}{2} +  \dfrac{ - 3}{ \:  \:  \: 5}   \times  \dfrac{ - 7}{ \:  \:  \: 9}

 \implies \tt\dfrac{ - 3}{ \: 10}  +  \dfrac{21}{45}

Reducing 21/45 to it's simplest form,

 \implies \tt\dfrac{ - 3}{ \: 10}  +  \dfrac{7}{15}

 \implies \tt\dfrac{( - 3 \times 3) + (7 \times 2)}{30}

\implies \tt \dfrac{ - 9 + 14}{30}

 \implies\tt \dfrac{5}{ 30}

Reducing 5/30 to it's simplest form,

  \implies\tt\dfrac{1}{6}

 \\

LHS = RHS.

Hence verified!!

________________________________

Similar questions