Math, asked by Khushijassar, 19 days ago

Plz solve my question class 10 plz proper solve​

Attachments:

Answers

Answered by amansharma264
16

EXPLANATION.

⇒ √3sinθ = cosθ.

As we know that,

We can write equation as,

⇒ sinθ/cosθ = 1/√3.

⇒ tanθ = 1/√3.

⇒ tanθ = tan(30°).

⇒ θ = 30°.

To find :

⇒ [(3cos²θ + 2cosθ)/(3cosθ + 2)].

⇒ [cosθ(3cosθ + 2)/(3cosθ + 2)].

⇒ [cosθ].

⇒ cos(30°) = √3/2.

⇒ [(3cos²θ + 2cosθ)/(3cosθ + 2)]. = √3/2.

                                                                                                                   

MORE INFORMATION.

(1) sin²θ + cos²θ = 1.

(2) 1 + tan²θ = sec²θ.

(3) 1 + cot²θ = cosec²θ.

Answered by Anonymous
59

 \huge\sf\dag \:  {Given :-}

  \bigstar \:  \boxed{  \sf \: \pink{ \sqrt{3} sin \theta \:  = cos \theta}}

 \sf \leadsto \:  \sqrt{3} sin \theta \:  = cos \theta \\  \sf \leadsto \:  \frac{sin \theta}{cos \theta}  \:  =  \frac{1}{ \sqrt{3} }  \:  \:  \:  \:  \:  \:  \\  \sf  \leadsto tan \theta \:  =  \frac{1}{ \sqrt{3} }  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \leadsto  \:  \theta \:  = 30 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \huge\sf \dag{ \: To Find :-}

 \bigstar \:   \boxed{\sf \green{ \frac{3 {cos}^{2}  \theta + 2cos \theta }{3cos \theta + 2} }}

 \huge \sf \dag \: {Solution :-}

 \sf \dashrightarrow \:  \frac{3 {cos}^{2} \theta \:  +  \: 2cos \theta }{ 3cos \theta \:  + 2 }  \:  \\    \sf\dashrightarrow \:  \frac{cos \theta(3 cos \theta \:  + 2) }{ 3cos \theta \:  + 2}   \:  \\  \sf \dashrightarrow \:   \frac{cos \theta \cancel \gray{(3 cos \theta \:  + 2)} }{ \cancel \gray{ 3cos \theta \:  + 2}  } \:  \:  \:  \\  \sf \dashrightarrow \: cos \theta \:  = 30 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \sf \dashrightarrow \: cos \: 30 \degree \:  =  \frac{\sqrt{3} }{ 2 }  \:  \:  \:  \:  \:  \:

\bigstar \:   \boxed{\sf \orange{ \frac{3 {cos}^{2}  \theta + 2cos \theta }{3cos \theta + 2 }  = 30 \degree}}

Similar questions