Physics, asked by jyoti0511, 10 months ago

plz solve que no 18 and 19​

Attachments:

Answers

Answered by saounksh
2

ᴀɴsᴡᴇʀ

1. MINIMUM VELOCITY

Given

  •  \vec{E} = E\hat{i}
  •  \vec{B} = B\hat{j}
  •  \vec{F} = q\vec{E} + q\vec{v}\times \vec{B}
  •  \vec{F} = 0

Velocity vector

Let  \vec{v}=v_x\hat{i}+v_y\hat{j}+v_z\hat{k}

Then,

\:\:\:\: \vec{F} = q\vec{E} + q\vec{v}\times \vec{B}

 0= qE\hat{i} + q(v_x\hat{i}+v_y\hat{j}+v_z\hat{k})\times B\hat{j}

 0= qE\hat{i} + q(v_xB\hat{k}-v_zB\hat{i})

 0= q(E -v_zB)\hat{i} + qv_xB\hat{k}

 v_z = \frac{E}{B}, v_x = 0

 \vec{v}=v_y\hat{j}+\left(\frac{E}{B}\right)\hat{k}

Magnitude of Velocity

Magnitude, v of the velocity is given by

\to v =|v_y\hat{j}+\left(\frac{E}{B}\right)\hat{k}|

\to v =\sqrt{{v_y}^2+{\left(\frac{E}{B}\right)}^2}

\to v ≥ \sqrt{{\left(\frac{E}{B}\right)}^2}

\to v ≥ \frac{E}{B}

  • Thus particle should be sent with a minimum velocity of \frac{E}{B}.

Since final expression of  \vec{v} does not contain \hat{j}, they are perpendicular i.e.

  • The particle should be sent perpendicular to the magnetic field direction.

2. An Example

Let

  •  \vec{A} = 2\hat{i} + 3\hat{j}
  •  \vec{B} = 3\hat{i}
  •  \vec{C} = 2\hat{i} - \hat{j}

It is clear that  \vec{A} ≠ \vec{C}

Now

\to \vec{A}\times \vec{B}

 = (2\hat{i} + 3\hat{j})\times 3\hat{i}

 = 6\hat{i}\times 3\hat{i} + 9\hat{j}\times \hat{i}

 = 6 + 0

 = 6

\to \vec{C}\times \vec{B}

 = (2\hat{i} - \hat{j})\times 3\hat{i}

 = 6\hat{i}\times 3\hat{i} - 3\hat{j}\times \hat{i}

 = 6 + 0

 = 6

Thus

 \vec{A}\times \vec{B}= \vec{C}\times \vec{B}

Similar questions