Plz solve question no. 4...
Attachments:
Answers
Answered by
1
we know that sin squared theta + cos squared theta is equal to 1
therefore
cos theta is equal to sin squared theta
sin 4 raise to theta equal to cos squared theta
sin square theta + sin raised to 4 theta equal to
sin squared theta + cos squared theta equal to 1
therefore
cos theta is equal to sin squared theta
sin 4 raise to theta equal to cos squared theta
sin square theta + sin raised to 4 theta equal to
sin squared theta + cos squared theta equal to 1
sachinkumar12431:
thx lot bro..... you are also correct but he has explained.... more easily..
Answered by
6
Given,
=> cos∅ + cos²∅ = 1
Using identity,
=> cos∅ = √( 1 - sin²∅ )
=> √( 1 - sin²∅ ) + cos²∅ = 1
Using identity,
=> cos²∅ = ( 1 - sin²∅ )
=> √( 1 - sin²∅) + 1 - sin²∅ = 1
=> √( 1 - sin²∅ ) = 1 - 1 + sin²∅
=> √( 1 - sin²∅ ) = sin²∅
=> ( 1 - sin²∅ ) = ( sin²∅ )²
=> 1 - sin²∅ = sin⁴∅
=> 1 = sin²∅ + sin⁴∅
=> - sin²∅ - sin⁴∅ = -1
=> - ( sin²∅ + sin⁴∅ ) = -1
=> ( sin²∅ + sin⁴∅ ) = ( -1 ) / ( - 1 )
•°• sin²∅ + sin⁴∅ = 1
b) 1
Hope it helps !!
=> cos∅ + cos²∅ = 1
Using identity,
=> cos∅ = √( 1 - sin²∅ )
=> √( 1 - sin²∅ ) + cos²∅ = 1
Using identity,
=> cos²∅ = ( 1 - sin²∅ )
=> √( 1 - sin²∅) + 1 - sin²∅ = 1
=> √( 1 - sin²∅ ) = 1 - 1 + sin²∅
=> √( 1 - sin²∅ ) = sin²∅
=> ( 1 - sin²∅ ) = ( sin²∅ )²
=> 1 - sin²∅ = sin⁴∅
=> 1 = sin²∅ + sin⁴∅
=> - sin²∅ - sin⁴∅ = -1
=> - ( sin²∅ + sin⁴∅ ) = -1
=> ( sin²∅ + sin⁴∅ ) = ( -1 ) / ( - 1 )
•°• sin²∅ + sin⁴∅ = 1
b) 1
Hope it helps !!
Similar questions