Math, asked by Anonymous, 4 months ago

plz solve this also no spam ❌​

Attachments:

Answers

Answered by Kanishkasrivastava
0

Answer:

(x-1/x)^2=x^2+1/x^2-2

x-1/x=4 as 16=4^2

And x^2+1/x^2=18

hope it helps

Answered by Anonymous
2

GIVEN:

 \sf \mapsto {{x}^{2}  +  \dfrac{1}{ {x}^{2}  }  = 18}

‎ ‎ ‎

TO FIND: ‎ ‎ ‎

 \sf{ \mapsto x -  \dfrac{1}{x} } ‎ ‎ ‎

‎ ‎ ‎

SOLUTION:

{ \text{ we \: have \: to \: find}  \:  \sf{x -  \frac{1}{x} }}

‎ ‎ ‎

Squaring this term will give:

‎ ‎ ‎

 \sf{{ \{ x -  \frac{1}{x} \} }^{2} } =  {x}^{2}  + { \frac{1}{x} }^{2}  - 2(x ) \times ( \frac{1}{x} )

‎ ‎ ‎

 \sf{{x}^{2}  +  \dfrac{1}{{x }^{2} } }  \: is \: given \: to \: be \: 18.

‎ ‎ ‎

 \sf{{ \{ x -  \frac{1}{x} \} }^{2} } =  18  - 2 \cancel{(x} ) \times ( \frac{1}{ \cancel{x} })

‎ ‎ ‎

 \sf{{ \{ x -  \frac{1}{x} \} }^{2} } =  18  - 2

‎ ‎ ‎

 \sf{{ \{ x -  \frac{1}{x} \} }^{2} } =  16

‎ ‎ ‎

 \sf{{ \{ x -  \frac{1}{x} \} }} =   \sqrt{16}

‎ ‎ ‎

 \sf{{ \{ x -  \frac{1}{x} \} }} =   4

‎ ‎ ‎

 \sf{{ Hence  \: value \: of \: ( x -  \frac{1}{x} )}} =   4.

Similar questions