plz solve this friends. Urgent plzzzzz
Attachments:
Answers
Answered by
3
====================================
♠ (-3)^0 - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2
• We will go on breaking the powers from left to right.
↓↓↓↓↓
♦ Using identity : a^0 = 1
= (1) - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2
= (1) - (-3 × -3 × -3) - (-3)^-1 + (-3)^4 - (-3)^-2
= (1) - (-27) - (-3)^-1 + (-3)^4 - (-3)^-2
♦ Using identity : (-a)^-1 = -1/a
= (1) - (-27) - (1/3) + (-3)^4 - (-3)^-2
= (1) - (-27) - (1/3) + (-3 × -3 × -3 × -3) - (-3)^-2
= (1) - (-27) - (1/3) + (81) - (-3)^-2
= (1) - (-27) - (1/3) + (81) - (-3 × -3)^-1
= (1) - (-27) - (1/3) + (81) - (9)^-1
♦ Using identity : a^-1 = 1/a,
= (1) - (-27) - (1/3) + (81) - (1/9)
♦ Opening the brackets,
= 1 + 27 + 1/3 + 81 - 1/9
♦ Taking LCM = 9,
= (9 + 243 + 3 + 729 - 1)/9
= (983)/9
= 109 whole (2/9)
•°• Your answer is 109 whole (2/9), i.e. option A.
====================================
TheBrainliestUser:
Nice Explanation
Answered by
3
Q: (-3)^0 - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2
= (-1) - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2
= (-1) - (-3 × -3 × -3) - (-3)^-1 + (-3)^4 - (-3)^-2
= (-1) - (-27) - (-3)^-1 + (-3)^4 - (-3)^-2
= (-1) - (-27) - (1/3) + (-3)^4 - (-3)^-2
= (-1) - (-27) - (1/3) + (-3 × -3 × -3 × -3) - (-3)^-2
= (-1) - (-27) - (1/3) + (81) - (-3)^-2
= (-1) - (-27) - (1/3) + (81) - (-3 × -3)^-1
= (-1) - (-27) - (1/3) + (81) - (9)^-1
= (1) - (-27) - (1/3) + (81) - (1/9)
= 1 + 27 + 1/3 + 81 - 1/9
Now, addition
1 + 27 + 1/3 + 81 - 1/9
= (9 + 243 + 3 + 729 - 1)/9
= (983)/9
= 109 ^2/9
Hence,
Option 'A' is right.
Similar questions