Math, asked by bhupesh46, 1 year ago

plz solve this friends. Urgent plzzzzz

Attachments:

Answers

Answered by anonymous64
3
<b>Heya mate. (^_-). Solution below.
====================================

♠ (-3)^0 - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2


• We will go on breaking the powers from left to right.
↓↓↓↓↓



♦ Using identity : a^0 = 1

= (1) - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2


= (1) - (-3 × -3 × -3) - (-3)^-1 + (-3)^4 - (-3)^-2


= (1) - (-27) - (-3)^-1 + (-3)^4 - (-3)^-2



♦ Using identity : (-a)^-1 = -1/a

= (1) - (-27) - (1/3) + (-3)^4 - (-3)^-2


= (1) - (-27) - (1/3) + (-3 × -3 × -3 × -3) - (-3)^-2


= (1) - (-27) - (1/3) + (81) - (-3)^-2


= (1) - (-27) - (1/3) + (81) - (-3 × -3)^-1


= (1) - (-27) - (1/3) + (81) - (9)^-1



♦ Using identity : a^-1 = 1/a,

= (1) - (-27) - (1/3) + (81) - (1/9)



♦ Opening the brackets,

= 1 + 27 + 1/3 + 81 - 1/9



♦ Taking LCM = 9,

= (9 + 243 + 3 + 729 - 1)/9

= (983)/9

= 109 whole (2/9)



•°• Your answer is 109 whole (2/9), i.e. option A.
====================================

<marquee>Thank you.

TheBrainliestUser: Nice Explanation
anonymous64: Thanks sir
Answered by TheBrainliestUser
3
 <b><marquee direction = "up"><font color="blue"> Solutions :-


Q: (-3)^0 - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2


= (-1) - (-3)^3 - (-3)^-1 + (-3)^4 - (-3)^-2


= (-1) - (-3 × -3 × -3) - (-3)^-1 + (-3)^4 - (-3)^-2


= (-1) - (-27) - (-3)^-1 + (-3)^4 - (-3)^-2


= (-1) - (-27) - (1/3) + (-3)^4 - (-3)^-2


= (-1) - (-27) - (1/3) + (-3 × -3 × -3 × -3) - (-3)^-2


= (-1) - (-27) - (1/3) + (81) - (-3)^-2


= (-1) - (-27) - (1/3) + (81) - (-3 × -3)^-1


= (-1) - (-27) - (1/3) + (81) - (9)^-1


= (1) - (-27) - (1/3) + (81) - (1/9)


= 1 + 27 + 1/3 + 81 - 1/9





Now, addition

1 + 27 + 1/3 + 81 - 1/9


= (9 + 243 + 3 + 729 - 1)/9


= (983)/9


= 109 ^2/9



Hence,
Option 'A' is right.

anonymous64: wonderful effects sir
TheBrainliestUser: thank you
Similar questions