plz solve this numerical its urgent plz no spam
Answers
Answer:
Given:
⇒ An artificial satellite takes 120 minutes for one complete revolution around the earth
\checkmark✓ To Find:
⇒ Angular velocity ( ω ) of the satellite
\checkmark✓ Solution:
We know that,
Angular Velocity ( ω )
\red{\boxed{\boxed{\rm \omega=\dfrac{2 \pi}{t} \ rad/s }}}
ω=
t
2π
rad/s
Here,
→ Unit of Angular Velocity ( ω ) is radians per second
→ ω = rad/s
→ t = Time taken
Given that,
The Artificial satellite takes 120 minutes for one complete revolution around the earth
Hence,
t = 120 minutes
We need Time (t) in seconds
So, Multiply the time value (in minutes) by 60 to get time in seconds
Since, 1 Minute = 60 Seconds
Therefore,
\green{\rm t = 120 \times 60 \ seconds}t=120×60 seconds
\underline{\underline{\bold{\green{\rm t = 7200 \ seconds}}}}
t=7200 seconds
According to the Question,
We are asked to find the Angular velocity ( ω ) of the satellite
So,
Substituting the above value in the Formula,
We get,
\orange{\rm \implies \omega=\dfrac{2 \times \pi}{7200} \ rad/s}⟹ω=
7200
2×π
rad/s
We know that,
\blue{\longrightarrow \rm \pi=\dfrac{22}{7}=3.14 }⟶π=
7
22
=3.14
Therefore,
\pink{\rm \implies \omega=\dfrac{2 \times 3.14}{7200} \ rad/s}⟹ω=
7200
2×3.14
rad/s
\green{\rm \implies \omega=\dfrac{6.28}{7200} \ rad/s}⟹ω=
7200
6.28
rad/s
\purple{\rm \implies \omega=0.000872 \ \ rad/s}⟹ω=0.000872 rad/s
Hence,
Angular velocity
(ω) = 0.000872 rad/s