Math, asked by gopika43, 1 year ago

plz solve this question with detailed steps.

Attachments:

Answers

Answered by akashrawat87
1
thora samajh Lena short trick use ki h..in question ko short bnaya Kara h phr solve Kiya Jata h
Attachments:
Answered by VemugantiRahul
3
\mathfrak{\huge{\red{\red{Hola\: !}}}}

\textbf{\green{\underline{\orange{\underline{\purple{SOLUTION:}}}}}}

\mathbb{\underline{\blue{Given:}}}

a secθ+b tanθ+c=0 -------(1)
p secθ+q tanθ+r=0 -------(2)

\mathbb{\underline{\blue{To\: Proove:}}}

(br - qc)^{2} - (pc - ar)^{2} = (aq - bp) ^{2}

\mathbb{\underline{\blue{Proof:}}}

From (1) :

=> c = -(a secθ+ b tanθ)

From (2) :
=> r = -( p secθ+ qtanθ)

\mathcal{L.H.S =}

= (br - qc)^{2} - (pc - ar)^{2}

Solving terms separately

(br - qc)^{2}

=[b{-(p secθ+ qtanθ)}-q{-(a secθ+ b tanθ)]^{2}

=[-bp secθ + bqtanθ + aq secθ - bq tanθ]^{2}

=[secθ(aq - bp)]^{2}

=(sec^{2} θ)(aq - bp)^{2}
-------------------------(3)

(pc - ar)^{2}

= [p{-(a secθ+ b tanθ) - a{-(p secθ+ q tanθ)}]^{2}

= [-ap secθ - bp tanθ + ap secθ + aq tanθ]^{2}

= [tanθ(aq - bp)]^{2}

= (tan^{2} θ)(aq - bp)^{2}

-------------------------(4)

Substitute (3) & (4) in L.H.S

=> [(sec^{2} θ)(aq - bp)^{2}] - [(tan^{2} θ)(aq - bp)^{2}]

= (aq - bp)^{2} × [ sec^{2} θ - tan^{2} θ]

= (aq - bp)^{2} × [1]

= (aq - bp)^{2}

\mathcal{=R.H.S}

\underline\underline{Hence\: Proved}

\mathbb{\underline{\green{ Identity\: Used: }}}

sec^{2} θ - tan^{2} θ = 1

\mathfrak{\huge{\pink{Cheers}}}

\mathcal{\huge{\orange{Hope\: it\: Helps}}}

VemugantiRahul: thanks for the mark :)
Similar questions