Math, asked by Purnimaa, 1 year ago

Plzz answer the question 5 fast

Attachments:

Answers

Answered by Deepsbhargav
6
◢GIVEN

 = > f(x) = log[ \frac{1 - x}{1 + x} ]
_______________________________

◢THEN,

 = > f(a) = log( \frac{ 1 - a}{1 + a} )

◢AND

 = > f(b) = log( \frac{1 - b}{1 + b} )
________________________________

◢NOW

 = > f(a) + f(b) = log[ \frac{1 - a}{1 + a} ] + log[ \frac{1 - b}{1 + b} ]
______________________[◢Eq(1)]

_______________________________

● WE CAN USE HERE :-

 = > log \alpha + log \beta = log( \alpha . \beta )
________________________________

◢BY Eq(1)

 = > f(a) + f(b) = log[ \frac{(1 - a)(1 - b)}{(1 + a)(1 + b)} ]
________________________[◢Eq(2)]

________________________________

◢NOW

 = > f(x) = log[ \frac{1 - x}{1 + x} ] \\ \\ = > f[ \frac{a + b}{1 + ab} ] = log [\frac{1 - \frac{a + b}{1 + ab} }{1 + \frac{a + b}{1 + ab} } ] \\ \\ = > f( \frac{a + b}{1 + ab} ) = log[ \frac{1 + ab - a - b}{1 + ab + a + b} ] \\ \\ = > f( \frac{a + b}{1 + ab} ) = log[ \frac{a(b - 1) - 1(b - 1)}{a(b + 1) + 1(b + 1)} ] \\ \\ = > f( \frac{a + b}{1 + ab} ) = log [\frac{(a - 1)(b - 1)}{(a + 1)(b + 1)} ] \\ \\ = > f[ \frac{a + b}{1 + ab} ] = log[ \frac{(1 - a)(1 - b)}{(1 + a)(1 + b)} ]
_________________________[◢Eq(3)]

________________________________

◢NOW

● BY Eq(2) AND Eq(3)

 = > f(a) + f(b) = f[ \frac{a + b}{1 + ab} ]
_____________________[◢PROVED]

=====================================

BE \: \: BRAINLY

Purnimaa: thanks a lot
Purnimaa: and sorry for disturbing while u were answering
Deepsbhargav: it's OK
Deepsbhargav: np
Deepsbhargav: and wello
Deepsbhargav: xD
Purnimaa: what
Deepsbhargav: nothing
Similar questions