Math, asked by sidra1784, 1 year ago

Plzz solve question no. 9 in copy

Attachments:

Anonymous: a = 0 and b = 1
sidra1784: a=1 & b =1
Anonymous: please check the answer again am getting a = 0 and b = 1

Answers

Answered by littyissacpe8b60
2

Take first part

7 + 3√5  

3 + √5


(7 + 3√5) (3 - √5)     =   21 - 7√5 + 9√5 - 15     =      6   +   2√5  

(3 + √5) (3 - √5)                  9 - 5                                       4


Now take 2nd part

 7 - 3√5  

 3  - √5


(7 - 3√5) (3 + √5)     =       21 + 7√5 - 9√5 - 15     =      6  - 2√5

 (3  - √5) ( 3 + √5)                       9   -   5                             4


We got now


 6   +   2√5       -       6 - 2√5     =    6 + 2√5   -  6 + 2√5

      4                                4                                  4

=    0 + 4√5

        4

a = 0

b = 4/4 = 1

Answered by BrainlyQueen01
10
Hey there !!

Here, in the question value of a and b is to be find. So, we will solve it by simplifying L.H.S by rationalising its denominator.

 \frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } = a + b \sqrt{5} \\ \\ \frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } \times \frac{3 - \sqrt{5} }{3 - \sqrt{5} } - \\ \\ \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } \times \frac{3 + \sqrt{5} }{3 + \sqrt{5} } \\ \\ \frac{7(3 - \sqrt{5} ) + 3 \sqrt{5} (3 - \sqrt{5} )}{(3) {}^{2} - ( \sqrt{5}) {}^{2} } - \\ \\ \frac{7(3 + \sqrt{5} ) - 3 \sqrt{5}(3 + \sqrt{5} )}{(3) {}^{2} - ( \sqrt{5} ) {}^{2} } \\ \\ \frac{21 - 7 \sqrt{5} + 9 \sqrt{5} - 15}{9 - 5} \bold{- }\\ \\ \frac{21 + 7 \sqrt{5} - 9 \sqrt{5} - 15 }{9 - 5} \\ \\ \frac{6 + 2 \sqrt{5} }{4} - \frac{6 - 2 \sqrt{5} }{4} \\ \\ \frac{ \cancel 6 + 2 \sqrt{5} - \cancel 6 + 2 \sqrt{5} }{4} \\ \\ \frac{ \cancel 4 \sqrt{5} }{ \cancel 4} \\ \\ = > \sqrt{5}

So, on comparing L.H.S with R.H.S , we get ;

0 + 1 \sqrt{5} \\ \\ \bold{Hence, \: value \: of \: a = 0 \: and \: b = 1.}

Thanks for the question!

sahilkrsah98: hlo
Similar questions