Math, asked by krishna1064, 1 year ago

plzz solve the given question

Attachments:

Answers

Answered by Zaransha
1

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(x  -  \frac{1}{x}) }^{2} + 2
Substituting this value in the above question,

12 {(x  -   \frac{1}{x}) }^{2} (2) - 28(x -  \frac{1}{x} ) - 9  = 0 \\  \\ 12 {(x  -   \frac{1}{x}) }^{2}  - 28(x -  \frac{1}{x} ) - 9 + 24 = 0  \\  \\ 12 {(x  -   \frac{1}{x}) }^{2}  - 28(x -  \frac{1}{x} ) + 15 = 0
[/tex]<br /><br /><br /><br />Now for the sake of simplicity,<br />lets take,<br />[tex]x  -   \frac{1}{x} = y


12 {y}^{2}   -  28y + 15 = 0
12 {y}^{2}   -  18y  - 10y + 15 = 0 \\  \\ 6y(2y   -   3)  - 5(2y + 3) = 0 \\ (6y - 5)(2y - 3) = 0 \\


6y - 5 = 0 \\ y =  \frac{  5}{6}  \\  \\  \\ or \\  \\ 2y - 3 = 0 \\ y =  \frac{3}{2}


So ,

x  -   \frac{1}{x}  =  \frac{5}{6}  \:  \: or \:  \:  \frac{3}{2}


Taking 5/6 as the value,

x -  \frac{1}{x}  =  \frac{5}{6}  \\ 6 {x}^{2}  - 6 = 5x \\ 6 {x}^{2}  - 5x - 6  = 0\\  6 {x}^{2}  - 9x + 4x - 6 = . \\ 3x(2x - 3) + 2(2x - 3) = 0 \\ (3x + 2)(2x - 3 )= 0 \\  \\ so \\  \\ x =  \frac{ - 2}{3}  \: or \frac{3}{2}




And if 3/2 is taken as the value then,

x  -   \frac{1}{x}  =  \frac{3}{2}  \\ 2 {x}^{2}  - 3x  - 2 = 0 \\ 2 {x}^{2}  - 4x - x - 2 = 0 \\ 2x(x - 2) - (x + 2) = 0 \\ (2x - 1)(x + 2) = 0 \\  \\  \\ therefore \\  \\ x =  \frac{1}{2 }  \: or \: 2

Zaransha: now that's what we call a question (lengthy) ^_^
krishna1064: thanks
Zaransha: you're welcome buddy
Similar questions