PLZZ SOLVE THIS::-
IF TAN A = n TAN B AND
Sin A = m Sin B
PROVE THAT :::::
COSA ^2 = m ^2 - 1 / n ^2 - 1
deeya30:
Do this friends plzz
Answers
Answered by
0
Given that, tanA=ntanB rArr sinA/cosA=n*sinB/cosB.
tanA=ntanB⇒sinAcosA=n⋅sinBcosB.
rArr sinA/sinB=n*cosA/cosB.....................................<<1>>.
Also given that, sinA=msinB rArr sinA/sinB=m.....................<<2>>.
Comparing <<1>> and <<2>>, we get,
m=n*cosA/cosB," giving, "cosB=n/m*cosA......<<3>>.
<<2>> rArr sinB=1/m*sinA...................................<<2'>>.
Now, using <<2'>> and <<3>> in cos^2B+sin^2B=1, we get,
rArrn^2/m^2*cos^2A+1/m^2*sin^2A=1.
rArr n^2cos^2A+sin^2A=m^2.
rArr n^2cos^2A+(1-cos^2A)=m^2.
rArr n^2cos^2A-cos^2A=m^2-1, i.e.,
rArr (n^2-1)cos^2A=(m^2-1).
rArr cos^2A=(m^2-1)/(n^2-1),
as desired!
Enjoy Maths.!
Similar questions