Math, asked by sanson53, 1 year ago

plzz solve this question fast i will mark you as brainlist

Attachments:

Answers

Answered by baggy
3
Hey friend,
Cos. Sec=1_2.
Cot=21.e
Cot_cossec.
Cot_cossec=consec A-cotA.
Hope this helps you.
Answered by SharmaShivam
4
\mathsf{To \: Prove \: : \: \sqrt{ \dfrac{1 \: - \: cos \: A }{1 \: + \: cos \: A}}\: = \: cosec \: A \: - \: cot \: A}

\mathsf{LHS\:= \:\sqrt{\dfrac{1\:-\:cos\:A}{1\:+\:cos\:A}}}

\textsf{Rationalizing the Denominator,}

\mathsf{=\:\sqrt{\left(\dfrac{1\: -\:cos\:A}{1\:+\:cos\:A}\right)\:\times\:\left(\dfrac{1\:-\:cos\:A}{1\:-\:cos\:A}\right)}}}

\mathsf{= \: \sqrt{\dfrac{(1 \: - \: cos \: A)^{2}}{( 1^{2} \: - \: {cos}^{2}A)}}}

\mathsf{= \: \dfrac{1 \: - \: cos \: A}{\sqrt{1 \: - \: {cos}^{2}A}}}

\mathsf{=\: \dfrac{1 \: - \: cos \: A}{\sqrt{{sin}^{2}A}}}

\mathsf{= \: \dfrac{ 1 \: - \: cos \: A}{sin \: A}}\mathsf{=\: \dfrac{1}{sin \: A} \: - \: \dfrac{cos \: A}{sin \: A}}

\mathsf{\implies\:cosec\:A\: -\:cot\:A\\\fbox{=RHS}}<br />

\boxed{\underline{\mathsf{Proved !! }}}
Similar questions