Math, asked by juli11, 5 months ago

plzzz help me.......​

Attachments:

Answers

Answered by BrainlyEmpire
1

Given :-

  • The side of rhombus = 5 cm
  • One of the length of diagonal of rhombus = 8 cm

To Find :-

  • The length of the other diagonal

Solution :-

  • The relation between the diagonals and sides of a rhombus is given by ,

 \\  \star \: {\boxed{\sf{\purple{ \bigg( \dfrac{d_1}{2}  \bigg)^{2}  +  \bigg( \dfrac{d_2}{2} \bigg)^{2}  =   {s}^{2} }}}}

 \\ \\  \sf{where}\begin{cases} & \sf{d_1  \& \: d_2 \: are \: diagonal \: of \: rhombus} \\   \\ & \sf{s \: is \: side \: of \: the \: rhombus}\end{cases}\\ \\

Substituting the values we have :-

 \\  :  \implies \sf \bigg( \dfrac{8}{2} \bigg)^{2}   +  { \bigg( \dfrac{d_2}{2} \bigg) }^{2}  =  {(5)}^{2}  \\  \\

 \\   : \implies \sf \:  {(4)}^{2}  +  { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 \\  \\

 \\   : \implies \sf 16 +  { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 \\  \\

 \\   : \implies \sf \: { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 25 - 16 \\  \\

 \\   : \implies \sf \: { \bigg( \dfrac{d_2}{2}  \bigg)}^{2}  = 9 \\  \\

 \\   : \implies \sf \: \bigg( \dfrac{d_2}{2}  \bigg) =  \sqrt{9}  \\  \\

 \\  :  \implies \sf \:\dfrac{d_2}{2} = 3 \\  \\

 \\   : \implies \sf \:d_2 = 3 \times 2 \\  \\

 \\    :  \implies \sf{\underline{\boxed {\mathfrak{\pink{d_2 = 6 \: cm}}}}}  \: \bigstar \\  \\

Hence ,

The length of the other diagonal of the given rhombus is 6 cm

Answered by usjadhav2001
0

Answer:

ok

Step-by-step explanation:

follow me

d2 = 2[s^2-(d1/2)^2]^0.5.

Example: Side = 5 cm and d1 = 8 cm.

d2 = 2[5^2-(8/2)^2]^0.5

= 2[10–16]^0,5

= 2*6^0.5

= 2*2.4

= 4.8 cm.

Similar questions