plzzz solve questions no.(c).
Attachments:
Answers
Answered by
1
given
cosA = 12/5 sinA ______(1
we have to prove
Tan^2- sin^2A = sin^4A.sec^2A ____(2
From eqn (1
cosA/sinA = 12/5 = tanA
and SinA = 5/12(cosA)
put these values in eqn (2
L.H.S =(12/5)^2 - (5/12cosA)^2
= 144/25 - 25/144(cos^2A)
= 144/25(1-cos^2A) = 144/25(sin^2A)
R.H.S = (5/12cosA)^4 × sec^2A
= 25/144.cos^4A × sec^2A
= 25/144 cos^4A × 1/cos^2A
= 25/144.cos^2A
hence L.H.S = R.H.S
Proved
cosA = 12/5 sinA ______(1
we have to prove
Tan^2- sin^2A = sin^4A.sec^2A ____(2
From eqn (1
cosA/sinA = 12/5 = tanA
and SinA = 5/12(cosA)
put these values in eqn (2
L.H.S =(12/5)^2 - (5/12cosA)^2
= 144/25 - 25/144(cos^2A)
= 144/25(1-cos^2A) = 144/25(sin^2A)
R.H.S = (5/12cosA)^4 × sec^2A
= 25/144.cos^4A × sec^2A
= 25/144 cos^4A × 1/cos^2A
= 25/144.cos^2A
hence L.H.S = R.H.S
Proved
Answered by
2
Given 5 cos A = 12 sin A
5 cos A = 12 sin A ------------ (1)
tan A = sin A/cos A
= 5 cos A/12/cos A
= 5/12.
We know that sec^2 A = 1 + tan^2 A
= 1 + (5/12)^2
= 1 + 25/144
= 169/144
sec A = 13/12.
We know that cos A = 1/sec A
= 1/13/12
= 12/13.
We know that sin^2 A = 1 - cos^2 A
= 1 - (12/13)^2
= 1 - 144/169
= 25/169
sin A = 5/13.
LHS = tan^2 A - sin^2 A
= (5/12)^2 - (5/13)^2
= 5^2/12^2 - 5^2/169
= 5^2 * 169 - 5^2 * 144/12^2 * 13^2
= 25 * 169 - 25 * 144/24336
= 4225 - 3600/24336
= 625/24336.
RHS = sin^4 A * sec^2 A
= (5/13)^4 * (13/12)^2
= 5^4/13^4 * 13^2/12^2
= 5^4/13^2 * 12^2
= 625/169 * 144
= 625/24336.
LHS = RHS.
Hope this helps!
5 cos A = 12 sin A ------------ (1)
tan A = sin A/cos A
= 5 cos A/12/cos A
= 5/12.
We know that sec^2 A = 1 + tan^2 A
= 1 + (5/12)^2
= 1 + 25/144
= 169/144
sec A = 13/12.
We know that cos A = 1/sec A
= 1/13/12
= 12/13.
We know that sin^2 A = 1 - cos^2 A
= 1 - (12/13)^2
= 1 - 144/169
= 25/169
sin A = 5/13.
LHS = tan^2 A - sin^2 A
= (5/12)^2 - (5/13)^2
= 5^2/12^2 - 5^2/169
= 5^2 * 169 - 5^2 * 144/12^2 * 13^2
= 25 * 169 - 25 * 144/24336
= 4225 - 3600/24336
= 625/24336.
RHS = sin^4 A * sec^2 A
= (5/13)^4 * (13/12)^2
= 5^4/13^4 * 13^2/12^2
= 5^4/13^2 * 12^2
= 625/169 * 144
= 625/24336.
LHS = RHS.
Hope this helps!
afridi7:
too long bro
Similar questions