Math, asked by naveen4836, 5 months ago

plzzzzz help me.... ​

Attachments:

Answers

Answered by BrainlyEmpire
103

\bf\underline{\underline{\pink{Question:-}}}

  • ★ If two circles intersect in two points prove that the line through their centres is the perpendicular bisector of the common chord.

\bf\underline{\underline{\blue{Given:-}}}

  • ★ Two circles C(O,r) and C(O' , s) intersecting at points A and B.

\bf\underline{\underline{\red{To\:Prove:-}}}

  • ★ OO', is the perpendicular bisector of AB.

\bf\underline{\underline{\green{Construction:-}}}

  • ★ Draw the line segment OA, OB, O'A and O'B. Let OO' and AB intersects at M.

\bf\underline{\underline{\orange{Proof:-}}}

In ∆<OAO' and ∆OBO' , we have

OA = OB [each equal to r]

O'A = O'B [each equal to s]

OO' = OO' [common]

∴ ∆OAO' ≅ ∆OBO' [SSS-congruence]

==> ∠AOO' = ∠BOO'

==> ∠AOM = ∠BOM [ ∠AOO' = ∠AOM and ∠BOO' = ∠BOM]. ...(i)

In ∆AOM and ∆BOM, we have

OA = OB. [ each equal to r]

∠AOM = ∠BOM [ from (i) ]

OM = OM [comon]

∴ ∆AOM ≅ ∆BOM

==> AM = BM and ∠AMO = ∠BMO

==> AM = BM and ∠AMO = ∠BMO = 90°

==> OO' is the perpendicular bisector of AB

Attachments:
Answered by MissLuxuRiant
0

\large{\underline{\underline{\sf{ \maltese \: {★Given:-}}}}}

Weight = 100 N

Height = 10 m

\large{\underline{\underline{\sf{ \maltese \: {★To \: find:-}}}}}

Potential energy = ?

\large{\underline{\underline{\sf{ \maltese \: {Solution:-}}}}}

➊ We know that:–

\qquad \bull \bf \: {Weight = Mass \times Acceleration }

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: {100 = mass \times 10 } \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: { \dfrac{100}{10} = mass } \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: { mass = \cancel\dfrac{100}{10} } \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\qquad \quad {:} \longrightarrow\sf \: \underline{ \boxed {\sf{mass = 10 \: kg }}} \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

➋ We know that:–

\qquad \bull \bf \: { Potential \: energy=mass \times acceleration \times height }

Similar questions