Math, asked by sakshi345, 1 year ago

plzzzzzzzzzzzz solve

Attachments:

Answers

Answered by IshanS
10
Hi there!

Let x = 1.3232323... ---(i)

Multiplying eqn. (i) by 10 and 1000, 

10x = 13.232323... ----(ii)

1000x = 1323.232323... ----(iii)

Subtracting eqn. (ii) from (iii),

1000x - 10x = 1323.232323... - 13.232323...

990x = 1310

x = 1310 / 990 = 131 / 99

Hence, The required answer is :-
p / q form of 13.232323.... = 131 / 99

Hope it helps! :)

DaIncredible: great bhai ^_^
Answered by Anonymous
3
Heya dear ,

Solution is given below ....
________________________________

Express - 1.323 (bar on 23)

let \:  \: x = 1.323 \: (bar \:  \: on \: 23). \: than \:  \\  \\ =  >  x = 1.323232 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  ......(1) \\  =  > 10x = 13.232323 \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  ......(2) \\  and \:  \:  \: 1000x = 1323.2323 \:  \:  \:  \: \:  \:  \:   \:  \: .......(3) \\  \\ on \: subtracting \:  \: (2) \:  \: from \:  \: (1) \\ we \:  \: get \\  \\ 990x = 1310 \\  \\  =  > x =  \frac{1310}{990}  =  \frac{262}{198}  =  \frac{131}{99}  \\  \\ so \:  \: answer \:  \: is \:  \\ 1.323 =  \frac{131}{99}  \:  \:  \:  \: answer
_____________________________

HOPE this helps you.
☺☺

Anonymous: plzz sister if its helpful for you plzz plzz mark as brilliant
Similar questions