Math, asked by 11426afreen, 5 months ago

point a(9,12) rotates around the orgin o in the plane through 60degree in the anticlockwise direction to a new position b find the coordinates of the point​

Answers

Answered by shadowsabers03
165

Let B(h, k) be the new position of the point A(9, 12) when it's rotated about O(0, 0) in anticlockwise direction.

As the point is rotated about origin, it's distance from the origin is not changed. Hence,

\longrightarrow OB=OA

\longrightarrow\sqrt{h^2+k^2}=\sqrt{9^2+12^2}

\longrightarrow h^2+k^2=225\quad\quad\dots(1)

The angle made by OA with x axis will be,

\longrightarrow\alpha_1=\tan^{-1}(m_1)

where m_1 is slope of OA, i.e.,

\longrightarrow\alpha_1=\tan^{-1}\left(\dfrac{12-0}{9-0} \right)

\longrightarrow\alpha_1=\tan^{-1}\left(\dfrac{4}{3}\right)

\longrightarrow\tan\alpha_1=\dfrac{4}{3}

Let \alpha_2 be the angle made by OB with x axis, which is 60° more than \alpha_1, i.e.,

\longrightarrow\alpha_2=\alpha_1+60^o

Then slope of OB will be,

\longrightarrow m_2=\tan\alpha_2

\longrightarrow m_2=\tan(\alpha_1+60^o)

\longrightarrow m_2=\dfrac{ \tan\alpha_1+\tan60^o}{1-\tan\alpha_1\tan60^o}

\longrightarrow\dfrac{k-0}{h-0}=\dfrac{\dfrac{4}{3}+\sqrt3}{1-\dfrac{4}{3}\sqrt3}

\longrightarrow\dfrac{k}{h}=\dfrac{4+3\sqrt3}{3-4\sqrt3}\quad\quad\dots(2)

Squaring,

\longrightarrow\dfrac{k^2}{h^2}=\dfrac{43+24\sqrt3}{57-24\sqrt3}

\longrightarrow\dfrac{k^2}{h^2}=\dfrac{43+24\sqrt3}{100-\left(43+24\sqrt3\right)}

\Longrightarrow\dfrac{k^2}{h^2+k^2}=\dfrac{43+24\sqrt3}{100}

From (1),

\longrightarrow\dfrac{k^2}{225}=\dfrac{43+24\sqrt3}{100}

\longrightarrow k^2=\dfrac{225}{100}(43+24\sqrt3)

\longrightarrow k=\dfrac{3}{2}(4+3\sqrt3)

And from (2),

\longrightarrow h=\dfrac{3-4\sqrt3}{4+3\sqrt3}\,k

\longrightarrow h=\dfrac{3}{2}(3-4\sqrt3)

Hence the new position is \bf{\left(\dfrac{3}{2}\left(3-4\sqrt3\right),\ \dfrac{3}{2}\left(4+3\sqrt3\right)\right).}

Attachments:
Similar questions