pqr is a triangle right angle at P and M is point on QR such that pm perpendicular to QR so that p m square equals to given in to mi
Answers
Answered by
23
Given: ΔPQR is right angled at P is a point on QR such that PM ⊥QR.
To prove: PM2 = QM × MR
Proof: In ΔPQM, we have
PQ2 = PM2 + QM2 [By Pythagoras theorem]
Or, PM2 = PQ2 - QM2 ...(i)
In ΔPMR, we have
PR2 = PM2 + MR2 [By Pythagoras theorem]
Or, PM2 = PR2 - MR2 ...(ii)
Adding (i) and (ii), we get
2PM2 = (PQ2 + PM2) - (QM2 + MR2)
= QR2 - QM2 - MR2 [∴ QR2 = PQ2 + PR2]
= (QM + MR)2 - QM2 - MR2
= 2QM × MR
∴ PM2 = QM × MR
To prove: PM2 = QM × MR
Proof: In ΔPQM, we have
PQ2 = PM2 + QM2 [By Pythagoras theorem]
Or, PM2 = PQ2 - QM2 ...(i)
In ΔPMR, we have
PR2 = PM2 + MR2 [By Pythagoras theorem]
Or, PM2 = PR2 - MR2 ...(ii)
Adding (i) and (ii), we get
2PM2 = (PQ2 + PM2) - (QM2 + MR2)
= QR2 - QM2 - MR2 [∴ QR2 = PQ2 + PR2]
= (QM + MR)2 - QM2 - MR2
= 2QM × MR
∴ PM2 = QM × MR
Answered by
15
Given PM perpendicular to QR
To prove :PMsquare =QM. MR
Proof: in ΔPQM and ΔPMR
ΔPQM.~ΔPMR(theorem 6.7)
PM/QM=MR/PN (by bpt)
PM2=QM.QR
Hence Proved
Similar questions