Physics, asked by bickyrajsoibam, 10 months ago

Practice Problems : 1
1. An object when placed in front of a convex lens forms a real image of 0.5 magnification. If the
distance of the image from the lens is 24 cm, calculate the focal length of the lens .​

Answers

Answered by Anonymous
6

&lt;html&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>h1 {</p><p></p><p>text-shadow: 0 0 11px #FF0000;</p><p></p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;h1&gt;   ♔ Vital Contributor &lt;/h1&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;

\mathcal{\huge{\underline{\underline{\red{Given:-}}}}}

  • Object placed in front of a convex lens forms a real image.
  • Magnification = 0.5
  • Distance of the image = 24 cm

\mathcal{\huge{\underline{\underline{\green{To\:Find:-}}}}}

⬛ The focal length of the lens.

\mathcal{\huge{\underline{\underline{\blue{Answer:-}}}}}

✒The focal length of the lens is 16 cm.

\mathcal{\huge{\underline{\underline{\pink{Solution:-}}}}}

▶Magnification, m=−0.5 [ Image is real ]

▶v = 24 cm

m =  \dfrac{v}{u}

 - 0.5 =  \dfrac{24}{u}

⏩ u = -48 cm

Using,

 \boxed{\red{\dfrac{1}{v} -  \dfrac{1}{u} =  \dfrac{1}{f}}}

 \dfrac{1}{24}  -  \dfrac{1}{( - 48)}  =  \dfrac{1}{f}

 \dfrac{1}{f} =  \dfrac{1}{24}  +  \dfrac{1}{48}

 \dfrac{1}{f}  =  \dfrac{2 + 1}{48}

 \dfrac{1}{f}  =  \dfrac{3}{48}

 f = \cancel{  \dfrac{48}{3}}

f \:  = 16 \: cm

________________________________

Answered by Anonymous
1

Answer:

Answer

Mark the upper budy brainliest dude.

Similar questions