Math, asked by sonusharma45, 5 months ago

pre baord question

class 10​

Attachments:

Answers

Answered by katha8910
1

Answer:

L.H.S= √1-cosA/1+cosA

= √1-cosA. 1-cosA

----------------------- ×-------------------

1+cosA. 1-cosA

√(1+cosA)²

------------------

1-cosA²

√(1+cosA)²

-----------------

sin²A

=. 1-cosA

-----------

sinA

cosecA- cotA= R.H.S

hope it will help you

Mark me brainliest

Answered by mathdude500
4

\large\underline{\bold{Given \:Question - }}

 \sf \: Prove \:  that \:  :  \sqrt{\dfrac{1 + cosA}{1 - cosA} }  = cosecA - cotA

\large\underline{\bold{Solution-}}

Identities used :-

(1). \:  \boxed{ \bf{1 -  {cos}^{2} A =  {sin}^{2}A }}

(2). \:  \boxed{ \bf{cosecA = \dfrac{1}{sinA} }}

(3). \:  \boxed{ \bf{\dfrac{cosA}{sinA}  = cotA}}

Let's solve the problem now!!

Consider LHS

 \sf \:   \sqrt{\dfrac{1 + cosA}{1 - cosA} }

On rationalizing the denominator, we get

 \sf \:  =  \sqrt{\dfrac{1 + cosA}{1 - cosA}  \times \dfrac{1 + cosA}{1 + cosA} }

 \sf \:  =  \sqrt{\dfrac{ {(1 + cosA)}^{2} }{1 -  {cos}^{2}A } }

 \sf \:  =  \sqrt{\dfrac{ {(1 + cosA)}^{2} }{ {sin}^{2} A} }

 \sf \:  = \dfrac{1 + cosA}{sinA}

 \sf \:  = cosecA + cotA

 \bf \:  = RHS

\large{{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions