If a(b-c) x^2 + b(c-a) x + c(a-b) = 0 has equal roots, show that 2/b = 1/a + 1/c
Answers
Answer:
→ Delta=0
→ [b(c-a)]^2–4* ac(a-b)(b-c)=0
→ [b(c-a)]^2=4* ac(a-b)(b-c)
→ b^2(c-a)^2=4* ac(a-b)(b-c)
→ b^2(c^2–2ac+a^2)=4* ac(ab-b^2-ac+bc)
→ b^2c^2–2ac b^2+a^2b^2=4* ac(ab-b^2-ac+bc)
→ b^2c^2+2ac b^2+a^2b^2=4* ac(ab-ac+bc)
→ b^2(c+a)^2=4* ac(ab-ac+bc)
→ [b(c+a)]^2=-4* (ac)^2 + 4ac*b(c+a)
→ [b(c+a)]^2- 4ac*b(c+a)+4* (ac)^2 = 0
→ ([b(c+a)]- 2ac)^2 = 0
→ [b(c+a)]- 2ac = 0
→ b(c+a)= 2ac
Given quadratic equation,
a(b-c)x^2+b(c-a)^2+c(a-b)=0
also zeroes of given equation are equal.
Therefore,
discriminant=0
b^2-4ac=0
{b(c-a)}^2-4{a(b-c)}{c(a-b)}=0
b^2(c^2+a^2-2ac)-4{ab-ac}{ac-bc}=0
b^2c^2+a^2b^2-2ab^2c-4{a^2bc-ab^2c-a^2c^2+abc^2}=0
b^2c^2+a^2b^2-2ab^2c-4a^2bc+4ab^2c+4a^2c^2-4abc^2=0
b^2c^2+a^2b^2+2ab^2c-4a^2bc +4a^2c^2-4abc^2=0
b^2c^2+a^2b^2+4a^2c^2+2ab^2c -4a^2bc-4abc^2=0
We know that,
a^2+b^2+c^2+2ab+2bc+2ac={a+b+c}^2
By above identity we get,
{bc+ab-2ac}^2=0
bc+ab-2ac=0
b(a+c)=2ac
b=2ac/(a+c)
Hence if zeroes of given quadratic equations then,
b=2ac/(a+c)