Math, asked by PRANSISRIVASTAVA, 2 months ago

Prime factorise & rationalise denominator: 14/√108-√96+√192-√54​

Answers

Answered by vyaswanth
16

Step-by-step explanation:

 \frac{14}{ \sqrt{108} -  \sqrt{96}  +  \sqrt{192} -  \sqrt{54}   }

 \sqrt{108}  =  \sqrt{36 \times 3 }  = 6 \sqrt{3}  \\  \sqrt{96}  =  \sqrt{16 \times 6}  = 4 \sqrt{6}  \\  \sqrt{192}  =  \sqrt{64 \times 3}  = 8 \sqrt{3}  \\  \sqrt{54}  =  \sqrt{9 \times 6}  = 3 \sqrt{6}

 \frac{14}{6 \sqrt{3} - 4 \sqrt{6}  + 8 \sqrt{3} - 3 \sqrt{6}   }

 \frac{14}{14 \sqrt{3} - 7 \sqrt{6}  }

 \frac{14}{7(2 \sqrt{3} -  \sqrt{6})  }

 \frac{2}{2 \sqrt{3} -  \sqrt{6}  }

 \frac{2}{ \sqrt{2}( \sqrt{2} \times  \sqrt{3}   -  \sqrt{3})  }

 \frac{ \sqrt{2} }{ \sqrt{6} -  \sqrt{3}  }

multiplying with 6+3 we get

 \frac{ \sqrt{2}( \sqrt{6} +  \sqrt{3})   }{( \sqrt{6} +  \sqrt{3})( \sqrt{6} -  \sqrt{ 3} )   }

 \frac{ \sqrt{12} +  \sqrt{6}  }{6 - 3}

 \frac{2 \sqrt{3}  +  \sqrt{6} }{3}

hence this is the final answer

Similar questions