Math, asked by Aayushi0495, 1 year ago

Proove: sin0-cos0 +1 ÷sin0+ cos0 -1 = 1 ÷ sec0 - tan0

Answers

Answered by Aurora34
18
hey ______________ ____________________________________
here is your ans

→ refer to the attachment

____________________________________
hope it helps...

Attachments:

Aayushi0495: Yup... It helped..
Aurora34: welcome
Answered by guptasingh4564
28

Hence Proved.

Step-by-step explanation:

Given,

Prove:  \frac{sin\theta-cos\theta+1}{sin\theta+cos\theta-1}=\frac{1}{sec\theta-tan\theta}

LHS:

\frac{sin\theta-cos\theta+1}{sin\theta+cos\theta-1}

=\frac{\frac{sin\theta-cos\theta+1}{cos\theta} }{\frac{sin\theta+cos\theta-1}{cos\theta} } (By dividing cos\theta on numerator and denominator)

=\frac{tan\theta-1+sec\theta}{tan\theta+1-sec\theta}

=\frac{(tan\theta+sec\theta)-(sec^{2}\theta-tan^{2}\theta)  }{1-sec\theta+tan\theta}

=\frac{(tan\theta+sec\theta)-(sec\theta-tan\theta)(sec\theta+tan\theta)  }{1-sec\theta+tan\theta}

=\frac{(tan\theta+sec\theta)(1-sec\theta+tan\theta)}{1-sec\theta+tan\theta}

=tan\theta+sec\theta

=\frac{(sec\theta+tan\theta)(sec\theta-tan\theta)}{(sec\theta-tan\theta)}

=\frac{(sec^{2} \theta-tan^{2} \theta)}{(sec\theta-tan\theta)}

=\frac{1}{sec\theta-tan\theta}=RHS

Hence Proved.

Similar questions