proove that tan50-tan40=2tan10
Answers
Answer:
tan50-tan40=2tan10
tan50 = 2tan10+tan40
tan50= tan(40+10)
we have tan(a+b) = (tan a +tan b)/(1-tan a tan b)
tan(40+10) = (tan40+ tan10)/(1-tan40tan10)
tan50 = (tan40+ tan10)/(1-tan40tan10)
tan50(1-tan40tan10)=tan40+ tan10
tan50-tan50tan40tan10 = tan40+tan10
and tan50 = tan(90-40) = cot40
=> tan50-cot40tan40tan10 = tan40+ tan10
tan50-tan10 = tan40+ tan10
because cot40= 1/tan40
tan50 = tan40+2tan10
tan50-tan40=2tan10
Step-by-step explanation:
tan50 - tan40
= sin50/cos50 - sin40/cos40
= (sin50*cos40 - cos50*sin40)/(cos40*cos50)
= sin(50-40)/(cos40*cos50)
= sin10/(cos40*cos50)
multiplying numerator and denominator by 2
2sin10/(2cos40*cos50)
=2sin10/{cos(50-40) + cos(50+40)}
= 2sin10/(cos10 + cos90)
= 2sin10/(cos10 + 0).........since cos90 = 0
= 2sin10/cos10
= 2tan10
RHS