prove [1/sec²x-cos²x + 1/cosec²x-sin²x]sin²xcos²x= 1-sin²xcos²x/2+sin²cos²x
Answers
Answered by
0
Step-by-step explanation:
LHS = Sec²x + cosec²x
\begin{gathered}= \frac{1}{cos {}^{2}x } + \frac{1}{ {sin}^{2}x } \\ \\ = \frac{ {sin}^{2}x + cos {}^{2}x }{ {cos}^{2} x \times {sin}^{2} x} \\ \\ = \frac{1}{ {cos}^{2}x \times {sin}^{2}x } \\ \\ = {sec}^{2} x. {cosec}^{2} x\end{gathered}
=
cos
2
x
1
+
sin
2
x
1
=
cos
2
x×sin
2
x
sin
2
x+cos
2
x
=
cos
2
x×sin
2
x
1
=sec
2
x.cosec
2
x
Similar questions