Math, asked by mohorpaul40, 11 months ago

prove : cos A cot A/1-sin A=1+cosec A​

Answers

Answered by drishti1003
2

Answer:

Hope it helps you...

Please mark it brainliest! Please...

Attachments:
Answered by Anonymous
103

AnswEr :

To Prove :

 \dfrac{ \cos( \alpha ) \cot( \alpha )  }{1 -  \sin( \alpha ) }  = 1 +  \csc( \alpha )

Proof :

 \longrightarrow \dfrac{ \cos( \alpha ) \cot( \alpha )  }{1 -  \sin( \alpha ) }

 \longrightarrow \dfrac{ \cos( \alpha )   \times \dfrac{\cos( \alpha ) }{ \sin( \alpha ) }  }{1 -  \sin( \alpha ) }

 \longrightarrow \dfrac{ \dfrac{\cos^{2} ( \alpha ) }{ \sin( \alpha ) }  }{1 -  \sin( \alpha ) }

\longrightarrow \dfrac{ { \cos}^{2}  (\alpha )}{ \sin( \alpha ) } \times  \dfrac{1}{ (1 - \sin( \alpha )) }

\longrightarrow \dfrac{1 -  \sin^{2} ( \alpha ) }{ \sin( \alpha )(1 -  \sin( \alpha ))  }

\longrightarrow \dfrac{(1 +  \sin( \alpha ) ) \cancel{(1 -  \sin ( \alpha ) )}}{ \sin( \alpha ) \cancel{(1 -  \sin( \alpha ))}  }

\longrightarrow \dfrac{(1 +  \sin( \alpha ) )}{ \sin( \alpha ) }

\longrightarrow \dfrac{1}{ \sin( \alpha ) }  +   \cancel\dfrac{ \sin( \alpha ) }{ \sin( \alpha ) }

\longrightarrow \csc( \alpha )  + 1

\longrightarrow 1 +  \csc( \alpha )

Similar questions