Math, asked by rohithayerra111, 4 months ago

prove :- cot(pi+x). cos(-x) /sin(pi-x). cos(pi/2+x) =cot^2x​

Answers

Answered by Ataraxia
10

To Prove :-

\sf \dfrac{cos ( \pi +x) cos (-x)}{sin (\pi - x ) cos \left( \dfrac{\pi}{2} +x\right)} = cot^2x

Solution :-

\sf L.H.S = \dfrac{cos ( \pi +x) cos (-x)}{sin (\pi - x ) cos \left( \dfrac{\pi}{2} +x\right)}

\bullet \bf \ cos(\pi + x) = - cos x \\\\\bullet \ cos(-x) = sinx \\\\\bullet \ sin(\pi - x) = sin x \\\\\bullet \ cos \left( \dfrac{\pi}{2}+x \right) = - sinx

 

Substitute the values :-

            = \sf \dfrac{-cos x \times cosx } {sin x \times - sin x } \\\\= \dfrac{-cos^2 x}{-sin^2 x } \\\\= \dfrac{cos^2x }{sin^2 x}\\\\

\bullet  \ \bf cotx = \dfrac{cosx}{sinx}

            = \sf cot^2 x \\\\= R.H.S

Hence proved.

Similar questions