Prove pythagoras theorem
Answers
Answered by
7
see the figure attached
Now prove that triangles ABC and CBE are similar.
It follows from the AA postulate that triangle ABC is similar to triangle CBE, since angle B is congruent to angle B and angle C is congruent to angle E. Thus, since internal ratios are equal s/a=a/c.
Multiplying both sides by ac we get
sc=a^2.
Now show that triangles ABC and ACE are similar.
As before, it follows from the AA postulate that these two triangles are similar. Angle A is congruent to angle A and angle C is congruent to angle E. Thus, r/b=b/c. Multiplying both sides by bc we get
rc=b^2.
Now when we add the two results we get
sc + rc = a^2 + b^2.
c(s+r) = a^2 + b^2
c^2 = a^2 + b^2,
concluding the proof of the Pythagorean Theorem.
Now prove that triangles ABC and CBE are similar.
It follows from the AA postulate that triangle ABC is similar to triangle CBE, since angle B is congruent to angle B and angle C is congruent to angle E. Thus, since internal ratios are equal s/a=a/c.
Multiplying both sides by ac we get
sc=a^2.
Now show that triangles ABC and ACE are similar.
As before, it follows from the AA postulate that these two triangles are similar. Angle A is congruent to angle A and angle C is congruent to angle E. Thus, r/b=b/c. Multiplying both sides by bc we get
rc=b^2.
Now when we add the two results we get
sc + rc = a^2 + b^2.
c(s+r) = a^2 + b^2
c^2 = a^2 + b^2,
concluding the proof of the Pythagorean Theorem.
Answered by
8
hey
here is answer
please see in pic
given
a triangle abc right angled at b
to prove= ac^2=ab^2+bc^2
cons=bd perpendicular ac
hope it helps
thanks
here is answer
please see in pic
given
a triangle abc right angled at b
to prove= ac^2=ab^2+bc^2
cons=bd perpendicular ac
hope it helps
thanks
Attachments:
Similar questions