Math, asked by llMissCrispelloll, 28 days ago

Prove: secA(1−sinA)(secA+tanA)=1
Don't spam​

Answers

Answered by MrImpeccable
16

ANSWER:

To Prove:

  • sec A(1 - sin A)(sec A + tan A) = 1

Proof:

We need to prove that,

\implies\sec A(1-\sin A)(\sec A+\tan A)=1

Taking LHS,

\implies\sec A(1-\sin A)(\sec A+\tan A)

Multiplying sec A with the first bracket,

\implies\sec A(1-\sin A)(\sec A+\tan A)

\implies(\sec A-\sec A\sin A)(\sec A+\tan A)

We know that,

\hookrightarrow\sec\theta=\dfrac{1}{\cos\theta}

So,

\implies(\sec A-\sec A\sin A)(\sec A+\tan A)

\implies\bigg(\sec A-\dfrac{1}{\cos A}\cdot\sin A\bigg)\bigg(\sec A+\tan A\bigg)

\implies\bigg(\sec A-\dfrac{\sin A}{\cos A}\bigg)\bigg(\sec A+\tan A\bigg)

We know that,

\hookrightarrow\dfrac{\sin\theta}{\cos\theta}=\tan\theta

So,

\implies\bigg(\sec A-\dfrac{\sin A}{\cos A}\bigg)\bigg(\sec A+\tan A\bigg)

\implies\left(\sec A-\tan A\right)\left(\sec A+\tan A\right)

We know that,

\hookrightarrow (x-y)(x+y)=x^2-y^2

So,

\implies\left(\sec A-\tan A\right)\left(\sec A+\tan A\right)

\implies\sec^2A-\tan^2A

We know that,

\hookrightarrow\sec^2\theta-\tan^2\theta=1

So,

\implies\sec^2A-\tan^2A

\implies\bf 1 = RHS

As, LHS = RHS,

HENCE PROVED!!

Answered by pds39937
75

Step-by-step explanation:

we \: have \: to \: prove  \\ \:  \: secA(1 - sinA) \: (secA + tanA) = 1 \\  proof: \\ let \: us \: start \: with \: \:  l.h.s. \\  = (secA - sinA \times secA)(secA + tanA) \\  = (secA - tanA)(secA + tanA)  \: (sec A = \frac{1}{cosA}  \: and  \: \frac{sinA}{cosA}  =tanA \\  \\  =  ({sec}^{2} A -  {tan}^{2} A) \:  \:   \:  as \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  =  {sec}^{2} A -  {tan}^{2} A \\  = 1. \\  = r.h.s. \\  \\ hence \: proved.

✅Hope it helps you ❗

Similar questions