Math, asked by guptaushma2014, 1 year ago

Prove: (sin3a/sina)²-(cos3a/cosa)²=8cos2a
wherever it is defined.

Answers

Answered by arpit281
0
Heya dear

===================================

LHS

sin3A / sinA - cos3A / cosA

= ( sin3A ) ( cosA ) - ( cos3A ) ( sinA ) / sinAcosA

= ( 3sinA - 4sin³A ) cosA - ( 4cos³A - 3cosA ) ( sinA ) / sinAcosA

= 3sinAcosA - 4sin³cosA - 4cos³AsinA + 3sinAcosA / sinAcosA

= 6sinAcosA - 4sin³cosA - 4cos³sinA / sinAcosA

= sinAcosA ( 6 - 4sin²A - 4cos²A ) / sinAcosA

= 6 - 4sin²A - 4cos²A

= 6 - 4 ( sin²A + cos²A ) [ °.° sin²a + cos²b = 1

= 6 - 4 × 1

= 6 - 4

= 2

RHS

thanks


guptaushma2014: The question is totally different
guptaushma2014: ohj
guptaushma2014: *Ok
Answered by karn89
0
(cos2a+2cos^2a)^2-(co2a-sin^2a)^2=rhs
4cos^2a-4sin^2a+4cos2a(sin^a+cos^a)= rhs
4(cos2a)+4cos2a=rhs
8cos2a= rhs
lhs = rhs hence prove

guptaushma2014: What formula you have used?
karn89: co^x-sin^x=cos2x
guptaushma2014: But isn't it cos3x in the question
karn89: we cab break it as cos (2x+x)
guptaushma2014: ok
Similar questions