Math, asked by Ancyrtg, 1 year ago

Prove tan³Q/1+tan²Q+cot³Q/1+cot²Q= secQcosecQ-2sinQcosQ

Answers

Answered by Anant02
1

 \frac{ { \tan( \alpha ) }^{3} }{1 +  { \tan( \alpha ) }^{2} }  +  \frac{ { \cot( \alpha ) }^{3} }{1 +  { \cot( \alpha ) }^{2} }  =  \sec( \alpha )  \csc( \alpha )  - 2 \sin( \alpha   )  \cos( \alpha )  \\ lhs \\  \frac{ { \tan( \alpha ) }^{3} }{1 +  { \tan( \alpha ) }^{2} }  +   \frac{ { \cot( \alpha ) }^{3} }{1 +  { \cot( \alpha ) }^{2} }  \\  =  \frac{ \frac{ { \sin( \alpha ) }^{3} }{ { \cos( \alpha ) }^{3} } }{ { \sec( \alpha ) }^{2} }  +  \frac{ \frac{ { \cos( \alpha ) }^{3} }{ { \sin( \alpha ) }^{3} } }{ { \csc( \alpha ) }^{2} }  \\  =  \frac{ { \sin( \alpha ) }^{3} }{ \cos( \alpha ) }  +  \frac{ { \cos( \alpha ) }^{3} }{ \sin( \alpha ) }  \\  =  \frac{ { \sin( \alpha) }^{4} +  { \cos( \alpha ) }^{4}  }{ \sin( \alpha )  \cos( \alpha ) }  \\  =  {( { \sin( \alpha ) }^{2} +  { \cos( \alpha ) }^{2} ) }^{2}  - 2 { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2}  \div  \sin( \alpha   )  \cos( \alpha )  \\  =  \frac{1 - 2 { \sin( \alpha ) }^{2} { \cos( \alpha ) }^{2}  }{ \sin( \alpha )  \cos( \alpha ) }  \\   = \frac{1}{ \sin( \alpha )\cos( \alpha )  }  -  \frac{2 { \sin( \alpha ) }^{2} { \cos( \alpha ) }^{2}  }{ \sin( \alpha ) \cos( \alpha )  }  \\  =  \sec( \alpha )  \csc( \alpha )  - 2 \sin( \alpha )  \cos( \alpha )  \\  = rhs \\

Ancyrtg: Thanks dood
Answered by tahira53
1

Answer:

Refer to the attachement...

Attachments:
Similar questions