Math, asked by Jigarbishnoi12345, 9 months ago

Prove
2 - 3 \sqrt{5}

as
irrational.​

Answers

Answered by Anonymous
3

 \mathtt{ \huge{ \fbox{Solution :)}}}

Let , 2 - 3√5 is an rational number

So , it can be written in the form of A/B

 \sf \mapsto 2 - 3 \sqrt{5}  =  \frac{a}{b} \\  \\  \sf \mapsto  - 3 \sqrt{5}   =  \frac{a}{b}  - 2 \\  \\ \sf \mapsto   \sqrt{5}   =  \frac{  - a  +  2b}{3b}

Here , √5 is an irrational number but (-a + 2b)/3b is rational number

Since , Irrational ≠ rational

Thus , our assumptions is incorrect

Hence , 2 - 3√5 is an irrational

_____________ Keep Smiling ☺

Answered by Anonymous
9

\huge{\boxed{\boxed{\sf{\red{Solution}}}}}

To prove : \sf 2-3\sqrt{5}\:is\:irrational

Proof:

\large\sf Let\:the\:2-3\sqrt{5}\:be\:rational

\large\sf Let\:its\:simplest\:form\:be\:\frac{p}{q}

\large\sf Then\:p\:and\:q\:are\:integers\:having\:no

\large\sf factor\:other\:than\:1

\implies\large\sf 2-3\sqrt{5}=\frac{p}{q}

\implies\large\sf -3\sqrt{5}=\frac{p}{q}-2

\implies\large\sf -3\sqrt{5}=\frac{p-2q}{q}

\implies\large\sf \sqrt{5}=\frac{-p+2q}{3q}

\large\sf Since\:p\:and\:q\:are\:integers

\large\sf so,\frac{-p+2q}{3q}

\large\sf Thus,\sqrt{5}\:is\:also\:rational

\large\sf But\:the\:contradiction\:the\:fact\:that

\large\sf \sqrt{5}\:is\:irrational\:So\:our\:assumption\:is\:wrong

\sf Hence(2-3\sqrt{5})\:is\:irrational

Similar questions